Finiteness Results for Regular Ternary Quadratic Polynomials

Document
Document

<p>In 1924, Helmut Hasse established a local-to-global principle for representations of rational quadratic forms. Unfortunately, an analogous local-to-global principle does not hold for representations over the integers. A quadratic polynomial is called regular if such a principle exists; that is, if it represents all the integers which are represented locally by the polynomial itself over ℤ<em><sub>p</sub></em> for all primes <em>p</em> as well as over ℝ. In 1953/54, G.L. Watson showed that up to equivalence, there are only finitely many primitive positive definite integral regular quadratic forms in three variables. More recently, W.K. Chan and B.-K. Oh take the first step in understanding regular ternary quadratic polynomials by showing that there are only finitely many primitive positive regular triangular forms in three variables. In this talk, I will give a finiteness result for regular ternary quadratic polynomials in greater generality. By defining an invariant called the conductor and a notion of a semi-equivalence class of a quadratic polynomial, we will utilize the theory of quadratic forms to obtain the following result: Given a fixed conductor, there are only finitely many semi-equivalence classes of positive regular quadratic polynomials in three variables.</p>

    Item Description
    Name(s)
    Thesis advisor: Chan, Wai Kiu, 1967-
    Date
    May 01, 2014
    Extent
    71 pages
    Language
    eng
    Genre
    Physical Form
    electronic
    Discipline
    Rights and Use
    In Copyright – Non-Commercial Use Permitted
    Digital Collection
    PID
    ir:2250