Publication Date
5-2014
Advisor(s)
Christopher J. Rasmussen
Department
Mathematics
Language
English
Abstract
Let A be an abelian variety defined over a number field F. For a prime number π, we consider the field extension of F generated by the π-powered torsion points of A. According to a conjecture made by Rasmussen and Tamagawa, if we require this field to be both a pro-π extension of F(ΞΌπβ) and unramified away from π, examples are quite rare. Indeed, it is expected that for a fixed dimension and field of definition, there exists such an abelian variety for only a finite number of primes.
We prove a uniform version of the conjecture in the case where the abelian varieties are elliptic curves with complex multiplication. In addition, we provide explicit bounds in cases where the number field has degree less than or equal to 100.
Recommended Citation
Bourdon, Abbey Marie, "A Uniform Version of a Finiteness Conjecture for Elliptic Curves with Complex Multiplication" (2014). Dissertations. 38.
https://wesscholar.wesleyan.edu/etd_diss/38
Β© Copyright is owned by author of this document