Document Type


Publication Date

January 2009

Journal or Book Title

Nature Physics




The Stokes–Einstein relation has long been regarded as one of the hallmarks of transport in liquids. It predicts that the self-diffusion constant D is proportional to (τ/T)−1, where τ is the structural relaxation time and T is the temperature. Here, we present experimental data on water confirming that, below a crossover temperature T× ≈ 290 K, the Stokes– Einstein relation is replaced by a ‘fractional’ Stokes–Einstein relation D ∼ (τ/T)−ζ with ζ ≈ 3/5 (refs 1–6). We interpret the microscopic origin of this crossover by analysing the OH- stretch region of the Fourier transform infrared spectrum over a temperature range from 350 down to 200 K. Simultaneous with the onset of fractional Stokes–Einstein behaviour, we find that water begins to develop a local structure similar to that of low-density amorphous solid H2O. These data lead to an interpretation that the fractional Stokes–Einstein relation in water arises from a specific change in the local water structure. Computer simulations of two molecular models further support this interpretation.