2002

Warming the Fuel for the Fire: Evidence for the Thermal Dissociation of Methane Hydrate During the Paleocene-Eocene Thermal Maximum

Ellen Thomas

Wesleyan University, ethomas@wesleyan.edu

Follow this and additional works at: https://wesscholar.wesleyan.edu/div3facpubs

Recommended Citation

Thomas, Ellen, "Warming the Fuel for the Fire: Evidence for the Thermal Dissociation of Methane Hydrate During the Paleocene-Eocene Thermal Maximum" (2002). Division III Faculty Publications. 106.

https://wesscholar.wesleyan.edu/div3facpubs/106

This Article is brought to you for free and open access by the Natural Sciences and Mathematics at WesScholar. It has been accepted for inclusion in Division III Faculty Publications by an authorized administrator of WesScholar. For more information, please contact nmealey@wesleyan.edu, jmlozanowski@wesleyan.edu.
Warming the fuel for the fire: Evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum

Deborah J. Thomas Department of Geological Sciences, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599-3315, USA

James C. Zachos Earth Sciences Department, University of California Santa Cruz, Santa Cruz, California 95064, USA

Timothy J. Bralower Department of Geological Sciences, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599-3315, USA

Ellen Thomas Department of Earth and Environmental Sciences, Wesleyan University, Middletown, Connecticut 06549-0139, USA and Center for the Study of Global Change, Yale University, New Haven, Connecticut 06520-8109, USA

Steven Bohaty Earth Sciences Department, University of California Santa Cruz, Santa Cruz, California 95064, USA

ABSTRACT
Dramatic warming and upheaval of the carbon system at the end of the Paleocene Epoch have been linked to massive dissociation of sedimentary methane hydrate. However, testing the Paleocene-Eocene thermal maximum carbon dioxide dissociation hypothesis has been hindered by the inability of available proxy records to resolve the initial sequence of events. The cause of the Paleocene-Eocene thermal maximum carbon dioxide excursion remains speculative, primarily due to uncertainties in the timing and duration of the Paleocene-Eocene thermal maximum. We present new high-resolution stable isotope records based on analyses of single planktonic and benthic foraminiferal shells from Ocean Drilling Program Site 690 (Weddell Sea, Southern Ocean), demonstrating that the initial carbon dioxide excursion was geologically instantaneous and was preceded by a brief period of gradual surface-water warming. Both of these findings support the thermal dissociation of methane hydrate as the cause of the Paleocene-Eocene thermal maximum carbon dioxide excursion. Furthermore, the data reveal that the methane-derived carbon was mixed from the surface ocean downward, suggesting that a significant fraction of the initial dissociated methane reached the atmosphere prior to oxidation.

Keywords: Paleocene-Eocene thermal maximum, stable isotopes, methane hydrates, paleoceanography.

INTRODUCTION
At the close of the Paleocene Epoch ca. 55 Ma, Earth experienced one of the most dramatic global warming events in the geologic record—the Paleocene-Eocene thermal maximum. Within a few thousand years, sea-surface temperatures warmed ~4–8 °C and deep ocean temperatures increased by ~5 °C (Fig. 1; e.g., Kennett and Stott, 1991). The short-lived warming event (~210 k.y.; Röhl et al., 2000) induced a host of biotic responses, including mass extinction of benthic foraminifera, rapid diversification of planktonic foraminifera and terrestrial mammals, and blooms of dinoflagellates (e.g., Tjalsma and Lohmann, 1983; Kelly et al., 1996; Hooker, 1996; Clyde and Gingerich, 1998; Crouch et al., 2001).

The Paleocene-Eocene thermal maximum corresponds to an abrupt negative 3‰–4‰ carbon dioxide excursion in marine and terrestrial sedimentary sections (Fig. 1; e.g., Kennett and Stott, 1991; Koch et al., 1992), a feature with major diagnostic significance. This excursion implies a massive and rapid addition of isotopically light carbon to the oceans and atmosphere. Possible explanations for this input have focused on enhanced mantle CO2 outgassing during North Atlantic Igneous Province emplacement (Eldholm and Thomas, 1993), dissociation of massive quantities of methane hydrates along continental slopes (Dickens et al., 1995, 1997), and impact of a carbonaceous bolide (Deming, 1999; Kent et al., 2001). The apparent rate and magnitude of the carbon dioxide excursion are consistent with both seafloor methane and a carbonaceous impactor as the carbon sources. However, the available data cannot distinguish between these two sources of light carbon, or whether the carbon (methane or otherwise) was added first to the oceans or atmosphere. The fundamental problem is that temporal relationships between warming and carbon input in different environments cannot be resolved with published stable isotope records.

We present new stable isotopes data from Ocean Drilling Program Site 690 (Weddell Sea, Southern Ocean) that indicate that the onset of the carbon dioxide excursion was geologically instantaneous, consistent with the hydrate dissociation hypothesis or impact-related carbon release. However, the data also demonstrate that the carbon dioxide excursion at Site 690 was preceded by a brief period of gradual surface-water warming. Thus the most coherent explanation for the entire data set is that gradual sea-surface warming led to the thermal dissociation of sedimentary methane hydrate. In addition, our data suggest that a substantial amount of the methane released was oxidized in the atmosphere.

METHODS
We generated stable isotope records based on analyses of individual foraminiferal shells, a strategy used in two previous Paleocene-Eocene thermal maximum investigations (Stott, 1992; Kelly et al., 1996). Site 690 (Fig. 2) was selected because it is the most expanded and complete deep-sea Paleocene-Eocene thermal maximum section recovered to date (Röhl et al., 2000). A continuous U-channel
across the onset of the Paleocene-Eocene thermal maximum was cut into 1 cm samples; above this we sampled the core every 5 cm. We conducted stable isotope analyses on 483 well-preserved specimens (Thomas et al., 1999) of the surface-dwelling, photosymbiont-bearing genus *Acarinina* and the thermocline-dwelling genus *Subbotina* (D’Hondt and Zachos, 1998) over a 121 cm interval, and on 7 individual and 5 multispecimen benthic foraminiferal samples over a 7 cm interval (ending 4 cm below the benthic foraminiferal extinction). Measurements of individual benthic foraminifera *N. truempyi* were limited because specimens large enough (>5 µg) for analysis were extremely rare, especially close to the onset of the benthic foraminiferal extinction. All stable isotope analyses were conducted at the University of California Santa Cruz with a precision better than 0.1‰ for δ13C and δ18O.

RESULTS

Several key features emerge from the single-specimen stable isotope data (Fig. 3). Specimens of surface- and thermocline-dwelling planktonic foraminifera record only preexcursion or excursion δ13C values across the onset of the event. The onset of excursion δ13C values within specimens of both groups occurs within a span of 1 cm, and coincides with individuals that still record pre-carbon isotope excursion values. In contrast to the bimodal planktonic carbon isotope distribution, both the surface- and thermocline-dwelling foraminiferal δ18O records contain intermediate values, marking a more gradual transition from pre—Paleocene—Eocene thermal maximum to Paleocene—Eocene thermal maximum δ18O values. Transitional δ13C values are expressed by the same individual specimens that contain pre—Paleocene—Eocene thermal maximum δ13C values.

Shifts in stable isotope values of different groups of foraminifera also show a stratigraphic sequence of events (Fig. 3). From bottom to top, these are (1) δ18O values of surface-dwelling planktonics decrease by ~1.5‰ between 170.81 m below seafloor (mbsf; level 1) and 170.78 mbsf (level 2). (2) Level 2 also corresponds to the initial decrease in δ18O values of thermocline-dwelling planktonics and the ~4‰ decrease in δ13C values of surface-dwelling specimens. (3) At 170.70 mbsf (level 3), δ13C values of thermocline dwellers decrease by ~2.5‰. (4) Peak Paleocene—Eocene thermal maximum δ18O values of thermocline dwellers (~−2‰) occur at level 4 (170.67 mbsf). Level 4 also marks a slight decrease in δ13C (~1.5‰) and δ18O values (~1‰) of two benthic individuals. New multispecimen and single-specimen benthic analyses above these two individuals indicate reworking based on pre—Paleocene—Eocene thermal maximum δ13C and δ18O values.

Above a brief convergence at the onset of the Paleocene—Eocene thermal maximum (from 170.70 to 170.42 mbsf), the trends in planktonic stable isotope values begin to diverge. Oxygen isotope values of thermocline dwellers remain low throughout the interval studied (to 169.84 mbsf). Oxygen isotope values of surface dwellers are ~−1.5‰ from 170.78 to 170.42 mbsf, decrease from ~−1.5 to ~−2.5‰ at 170.37 mbsf, and remain at ~−2.5‰ for the remainder of the record. Carbon isotope values of surface dwellers begin to increase at 170.37 mbsf.

DISCUSSION

Our combined carbon and oxygen single-specimen isotopic data (Fig. 3) provide a detailed chronology of rapid changes in South-ern Ocean thermal and carbon isotope depth gradients during the onset and initial recovery of the Paleocene-Eocene thermal maximum. Kennett and Stott (1991) first recognized the stable isotope excursions at Site 690; however, their multispecimen analyses lacked the resolution to unravel the timing relationships between warming and carbon input. Multispecimen records also average out the environmental variability that the single-specimen strategy exploits. As a result, we are now able to resolve the onset and evolution of the thermal and carbon anomalies. Our data support a warming-induced carbon input such as thermal dissociation of methane hydrates.

Figure 2. Paleogeographic reconstruction of late Paleocene showing location of Site 690 (from Ocean Drilling Stratigraphic Network).

Evidence for the Blast of Gas

The bimodal distribution of single-specimen carbon isotope values at the onset of the carbon isotope excursion suggests that the initial input of isotopically light carbon occurred in a geologic instant. We can discount the argument that the sharp base of the carbon isotope excursion resulted from dissolution or a hiatus (Dickens, 1998), because the very planktonic foraminifera that record only pre-or peak excursion δ13C values record a gradual decrease in the corresponding δ18O values. The geologically instantaneous onset of the carbon isotope excursion precludes the North Atlantic Igneous Province as the source of light carbon, because the δ13C value of mantle CO2 is only ~−6‰. The stratigraphic and hydrographic sequence of the first excursion δ13C values from surface to thermocline to benthic dwellers implies that the carbon isotope anomaly gradually propagated downward from the sea surface to the bottom waters.

Triggering the Blast

The stratigraphic progression of single-specimen stable isotope changes, with the decrease in surface-water δ18O values preceding the decrease in δ13C values, enables us to rule out several possible explanations of Paleocene—Eocene thermal maximum carbon input. The onset of the carbon isotope excursion would have preceded the decrease in δ18O values if the Paleocene—Eocene thermal maximum had resulted from erosion or impact-induced hydrate dissociation (e.g., Katz et al., 2001; Kent et al., 2001). Explosive volcanism (e.g., Bralower et al., 1997) would have resulted in an increase or no change in δ18O values at a high-latitude site. Thus, the most plausible mechanism to consider is the thermal dissociation of methane hydrates.

The occurrence of specimens of surface-dwelling foraminifera that record transitional δ18O values and pre—carbon isotope excursion δ13C values (level 1, Fig. 3) suggests an ~2 °C warming of surface waters prior to the on-
Figure 3. Single-specimen carbon and oxygen isotope data. Previously published benthic foraminiferal data are from Kennett and Stott (1991) and Thomas and Shackleton (1996). Gray arrow denotes onset of benthic foraminiferal extinction. Gray dashed lines indicate stratigraphic sequence of events at onset of Paleocene-Eocene thermal maximum. High-resolution samples derived from archive-half U-channel of Hole 690B, section 19-3, extend from 170.40 to 171.11 m below seafloor (mbsf). Above and below U-channel (169.84±171.73 mbsf), samples were taken from archive half at 2±5 cm intervals. Individuals from genera Acarinina and Subbotina, as well as N. truempyi were handpicked from >250 μm size fraction. PDB is Peedee belemnite.

set of the excursion. This finding conflicts with that of Bains et al. (1999), who found no evidence for pre–Paleocene-Eocene thermal maximum sea-surface warming on the basis of bulk sedimentary oxygen isotope analyses. We argue that the discrepancy results from the different analytical techniques, because changes in bulk stable isotopes at Site 690 during the Paleocene-Eocene thermal maximum interval reflect changes in the assemblage of calcareous nannofossils (Bralower, 2002). The cause of this warming is not known, although long-term outgassing of CO₂ from the North Atlantic Igneous Province is a distinct possibility. With the onset of the carbon isotope excursion (level 2, Fig. 3) surface mixed-layer temperatures eventually warmed an additional 4 °C. Transitional δ¹³C values recorded by thermocline dwellers occur above the δ¹⁸O decrease in surface dwellers (level 2, Fig. 3), indicating a distinct delay in the warming of the thermocline waters (several hundred meters depth). Moreover, the high degree of scatter in the transitional thermocline-dweller δ¹³C data is consistent with the notion that thermocline structure changed, prompting shifts in foraminiferal depth habitats as the intermediate and deep ocean began to warm.

Pathway of Hydrate Carbon

The top-down progression of the onset of the carbon isotope excursion suggests that a significant proportion of the methane from dissociated hydrates was rapidly transferred to the atmosphere and surface ocean. In order for calcifying organisms to record a methane-derived δ¹³C anomaly, the isotopically light methane must first be oxidized into CO₂ and incorporated into the HCO₃⁻ pool from which calcification occurs. Because the pattern of carbon isotope excursion propagation proceeded downward from surface waters, oxidation of methane must have taken place within the atmosphere–surface ocean. Had the initial release of methane been more gradual (enabling oxidation within the deep ocean), Site 690 planktonic foraminifera would have recorded transitional δ¹³C values at the onset of the event, and benthic individuals would have recorded the excursion prior to the planktonics.

At Site 690, progression of the initial δ¹⁸O decrease also occurs from surface waters downward. Heat may have been mixed vertically down to the thermocline, while warmer intermediate and deep waters may have been advected into the study region after sufficient warming in their respective source areas. The onset of peak thermocline warming (lowest δ¹⁸O values) coincides with the onset of the carbon isotope excursion in surface waters. This implies that hydrate dissociation did not occur at Site 690, otherwise thermocline and deeper water warming would have preceded the onset of the carbon isotope excursion.

The more gradual transition to excursion δ¹³C values in the benthic foraminiferal record can be understood by considering the dynamics of mixing and the vast size of the deep-sea inorganic C reservoir. As indicated by the bimodal planktonic δ¹³C data, the mean δ¹³C of the relatively small and well-mixed atmosphere and surface-ocean carbon reservoirs should have responded immediately to the initial release of methane. In contrast, because of the large mass of carbon and the slower mix-
ing time of the deep ocean (~1500 yr), it should take several thousands of years for the full magnitude of the carbon isotope excursion to be manifested in the deep sea. Thus, the delay in the thermocline and benthic δ¹³C decrease reflects the additional time required to mix the carbon anomaly throughout the deep-sea carbon reservoir. The lack of benthic individuals available for analysis (during the decline and extinction of benthic foraminifera) may also bias the timing of environmental change in the deep sea.

We note that the top-down progression in carbon input observed at the Paleocene-Eocene thermal maximum is strikingly similar to the recent changes in the atmospheric and surface ocean carbon reservoirs in response to release of anthrotopgenic CO₂. In the past century, the δ¹³C of atmospheric and surface-ocean CO₂ has decreased by ~1.2% (e.g., Joos and Bruno, 1998), while the deep ocean CO₂ has decreased by a maximum. After an initial convergence of surface-water dissolved inorganic carbon (DIC) began even while thermocline and benthic foraminifera still recorded carbon isotope excursion values. The smaller surface-ocean carbon reservoir should have recovered from the isotopic perturbation more rapidly than the larger deeper oceanic reservoirs. However, that the surface dwellers do not record any subsequent δ¹³C decrease after the initial onset of the carbon isotope excursion implies that all of the hydrate dissociation may have occurred in one major event. Additional hydrate dissociation should have resulted in further decrease of surface-water DIC δ¹³C values. Alternatively, subsequent gradual hydrate dissociation may have occurred, but the methane-derived carbon remained within the deep-ocean reservoir.

The thermal structure of the Southern Ocean water column changed markedly during the several tens of thousands years following the onset of the Paleocene-Eocene thermal maximum. After an initial convergence of surface and thermocline δ¹⁸O values at the onset of the warming (as noted by Kennett and Stott, 1991), thermal stratification resumed. Coincident with the initial recovery in surface-water δ¹³C values, surface-water δ¹⁸O values decreased by another ~1%, possibly as a consequence of enhanced greenhouse warming. These trends suggest a reestablishment of local thermal and chemical stratification.

PROPOSED CAUSAL SCENARIO FOR THE PALEOCENE-EOCENE THERMAL MAXIMUM

We propose the following scenario to explain the stratigraphic sequence of events in the new stable isotope data. Gradual warming occurred first in surface waters, then in waters at thermocline and intermediate depths. Subduction or downwelling of warmer intermediate waters in the region of water-mass formation led to thermal dissociation of methane hydrates at a location with a significant sedimentary hydrate content. Methane gas from the dissociated hydrates reached the atmosphere prior to widespread oxidation. The thermocline-intermediate water thermal anomaly likely reached the Southern Ocean via a combination of advection from a distal source region and vertical diffusion. The propagation of the carbon anomaly proceeded rapidly throughout the atmosphere and surface ocean, then more slowly downward into the thermocline and then bottom waters.

REFERENCES CITED