The Not So Wild Country East of Dikte: A Multivariate Analysis of Late Bronze Age East Cretan Tomb Assemblages

by

Katharine E. Barnes
Class of 2018

A thesis submitted to the faculty of Wesleyan University in partial fulfillment of the requirements for the Degree of Bachelor of Arts with Departmental Honors in Classical Civilization and the Archaeology Program

Middletown, Connecticut April, 2018
ACKNOWLEDGEMENTS

So many people have supported and helped me through this process. It would be impossible to give proper recognition to everyone that deserves it but here is short list of the people who have been with me every step of the way.

To my advisor, Dr. Kate Birney: This project would not have been possible without your help, guidance, and support. From the moment I first got to Wesleyan, you have pushed me and encouraged me to take full advantage of my time here. I cannot thank you enough.

To Professor Parslow: Taking classes with you always reminds me of why I enjoy Classics and Archaeology. Thank you for making learning Latin as fun as learning Latin can be.

To Professor Townsend: The classes I took with you at Clark were what first inspired my love of the ancient world. Thank you for supporting me during my transfer process and encouraging me to study archaeology.

To all my library buds- Caroline, Jack, Sarah, Hannah, Allegra, Jackson, Abby, Sydney: Without each and every one of you I would have succumbed to madness. Thank you for teaching me how to use excel, letting me run ideas by you, and for just generally being my friends. Let’s never ever ever go to the library again.

To all my non library friends and loved ones- Numa, Bea, Camille, Sam, Claire: Thank you for listening to my complaints, pretending to be interested in Eastern Crete and for being lovely and supportive. I love you all!!

To my family- Andrew, Connor, Mom, Dad, Grandma Kay, Mom and Papa: Thank you, thank you, thank you for everything. For watching my cats, for letting me take over the TV room to write my gazetteer, and for putting up with me writing a thesis chapter during Christmas Eve dinner. And for raising me and all that other stuff too, I guess.

And last, but certainly not least! To my cat, Zeeto: Pictures of your furry face are what got me through the darkest of times.
TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

- Cretan Chronology ... 1
- Exploring the Supposed “Wild Country East of Dikte” 7

CHAPTER 2: METHODOLOGY

- Graziadio’s Approach .. 10
- Graziadio’s Theoretical Approaches 13
- My Methodological Approach ... 15
- Methodology for Objects .. 18
 - Material Category ... 19
 - Size of Object/Quantity of Material Category 23
 - Time/Craftsmanship/Labor Category 23
 - Place of Origin Category .. 24
 - Contents Category .. 29
- Methodology for Tombs ... 31
 - Tomb Architecture .. 31
 - Body Treatment ... 34
- Problems and Challenges .. 35
- Example of Methodology .. 38

CHAPTER 3: GAZETTEER

LMIIIA Tombs ... 41
- Mochlos Limenaria .. 41
- Myrsini Aspropilia .. 135
- Pakhyammos ... 149
- Non-Tomb Objects .. 154

LMIIIB Tombs ... 156
- Mochlos Limenaria .. 156
- Myrsini Aspropilia .. 167
- Pakhyammos ... 177
- Gournia ... 179
- Non-Tomb Objects .. 180
LIST OF FIGURES

2.1: Map of Sites Examined in this Thesis .. 16
2.2: Map of Bronze Age Trade Routes ... 28
2.3: Floor Plan and Cross Section of Mouliana Tomb A 33
2.4: Floor Plan of Vasiliki Kamaraki Tomb .. 33
4.1: LMIIIA and IIIB Combined Tomb Values .. 231
4.2: LMIIIA and IIIB Combined Tomb Values When Divided by Number of
 Individuals .. 231
4.3: LMIIIC Total Tomb Values .. 233
4.4: LMIIIC Total Tomb Values Divided by Number of Individuals 233
4.5: Total Value Scores for Each Period ... 235
4.6: Total Value Scores for Each Period Divided by Number of Individuals 235
4.7: Period Value Scores Divided by Number of Individuals without
 Mouliana ... 236
4.8: Number of Seals and Thymiateria Per Period .. 238
4.9: LMIIIA Percentage of Imported Objects ... 239
4.10: LMIIIB Percentage of Imported Objects ... 240
4.11: LMIIIC Percentage of Imported Objects ... 240
4.12: Number of Drinking and Serving Vessel Types by Period 241
4.13: LMIIIA Percentage of Vessels Associated with Drinking and Serving 242
4.14: LMIIIB Percentage of Vessels Associated with Drinking and Serving 242
4.15: LMIIIC Percentage of Vessels Associated with Drinking and Serving 242
4.16: Total Value Scores of Metal Objects by Period 244
4.17: Percentage of Individuals Buried with Weapons and Jewelry by Period ... 247
4.18: Percentage of Burials that Used Burials Containers by Period 251
4.19: Frequency by Percent of Stirrup Jars and Pyxides by Period 252
5.1: Rethinking Tholoi: Total Value Scores for Each Period Divided by Number of
 Individuals .. 263
Chapter 1: Introduction

In 1987, John Bennet described Late Minoan (LM) III Eastern Crete as “the wild country east of Dikte” and in doing so summed up nearly a century’s worth of scholarly opinion concerning this region of Crete in the LMIII and more specifically the LMIIIC period. This assumption about East Crete continues even today with scholars referring to the “haphazard” housing and the “depressing” settlement patterns of the period (Watrous 2012). This characterization of Eastern Crete in the LMIII period as depressed, wild and disconnected is misleading. This thesis will seek to challenge this assumption. Eastern Crete has a rich and interesting history following the Late Bronze Age and so a deeper understanding of this supposed collapse is integral to understanding later Cretan history.

Cretan Chronology:

<table>
<thead>
<tr>
<th>Period</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMIII</td>
<td>1700-1600 BCE</td>
</tr>
<tr>
<td>LMIA (Eruption at Akrotiri)</td>
<td>1600-1500 BCE</td>
</tr>
<tr>
<td>LMIB (Cretan Palatial Centers Destroyed)</td>
<td>1500-1450 BCE</td>
</tr>
<tr>
<td>LMII</td>
<td>1450-1390 BCE</td>
</tr>
<tr>
<td>LMIIIA1</td>
<td>1390-1370/1360 BCE</td>
</tr>
<tr>
<td>LMIIIA2 (Knossian Collapse)</td>
<td>1370/1360- 1340/1330 BCE</td>
</tr>
<tr>
<td>LMIIIB (Mediterranean Collapse of c. 1200 BCE)</td>
<td>1340/1330- 1190 BCE</td>
</tr>
<tr>
<td>LMIIIC</td>
<td>1190-1070 BCE</td>
</tr>
</tbody>
</table>

(Smith 2002: 303).

Crete, especially in the MMIII-LMI periods, was the hegemonic power in the Aegean with colonies all over the Cycladic islands, extensive trade networks, and a thriving economic system (Rehak, Younger 1998). Knossos, the most famous and well-studied Minoan palatial center, was the administrative center of this power. In
LMIA an eruption on the nearby island of Akrotiri, one of the main distribution points for Knossian trade, lead to a massive disruption of the Minoan economic system and many scholars have suggested that this disruption lead to a decline and subsequent collapse of Minoan power (Koh 2016). It had also been proposed that the economic collapse was not directly caused by the loss of Akrotiri and that Cretans actually maintained economic power for some time following the eruption. Knappett et al., in an analysis of Late Bronze Age trade routes, determined that as a reaction to the loss of Akrotiri, Cretans merely changed trade routes. These changes, however, led to an increase in the cost of exchange and in response the Minoans invested in a smaller number of “seemingly key exchange links,” abandoning weaker sites (Knappett et al. 2011: 1020). Although this response allowed the Minoans to keep their hegemony after the eruption, it created an unstable system which resulted in eventual economic collapse (Knappet et al. 2011: 1020).

After this decline in hegemonic power, Crete shows evidence of island-wide destruction in the LMIB period (Driessen 2002: 4). At many of the destroyed sites the palaces were specifically targeted, art objects were purposefully destroyed, and all valuables are missing. The archaeological evidence also shows burning as the only destruction agent. Scholars have previously theorized that Crete was struck by a major earthquake but there is no evidence for extensive rubbish deposits as one would expect to see if the destruction were caused by earthquake damage (Driessen 2002: 4). Further, before the destruction, there is evidence that many sites added protection to water supplies and livestock suggesting that inhabitants were preparing for an attack. All of this suggests destruction by humans as opposed to by natural disaster.
Knossos was the only palatial center that was spared in this island wide destruction (Driessen 2002: 4-6).

Following this island-wide destruction, Knossos and many other palatial centers were reoccupied by the Mainland Mycenaean. This is evidenced by the introduction of Linear B, an alphabet used to write early Greek, and by the appearance of so-called “warrior graves” that were associated with burial customs on the Mainland (Driessen 1990: 124; Nash 2017: 12). Linear B tablets were found across both western and central Crete, but most predominantly at Knossos. They include place names that match major centers across the island. East Cretan sites, however, are entirely excluded from these tablets (Bennet 1987: 86). Not only is Eastern Crete excluded from the Linear B tablets, but neither Linear B, nor any other written language, has been found in this region during the LMIII period. While there is evidence of Mycenaean influence on Eastern Crete in the LMIIIA and IIIB periods, the nature of the influence is clearly different than that seen at Knossos. This lack of language combined with the lack of Knossian connection has led scholars to assume that Eastern Crete was remote and uninhabited backwater as compared to the rest of the island (Snodgrass 1971: 168; Bennet 1987).

In the LMIIA2 period, after the Mycenaean occupation, Knossos experienced a major destruction and subsequent abandonment (Driessen 1990: 121; Smith 2002: 1). This level of destruction was not seen on the rest of the island. In fact, the void left by Knossos may even have allowed East Cretan centers to develop their own flourishing local economies. Paschalidis, examining one set of East Cretan tombs
located at Tourloti, finds evidence of increased trade in contexts that post-date the collapse of the palace at Knossos (2009: 26).

The break between the LMIIIB and LMIIIC periods is marked by the rapid widespread Mediterranean collapse of c. 1200 BCE that is associated with the end of the Bronze Age and the invasion of the so-called Sea Peoples, a group of foreign invaders well documented by Egyptian inscriptions (Cline 2014: 1, 114).

Archaeological findings and Near Eastern texts evidence this collapse as well. An inscription at Medinet Habu in Egypt depicts large armies of foreign invaders, a never sent clay tablet found in a destruction layer at Ugarit pleads Egypt to send aid as they face an invasion and the Mycenaean palaces on the Mainland show an increase in heavy fortifications in the years leading up to 1200 BCE before they are also destroyed (Drews 1993: 158).

The Cretan palatial centers experienced a fate similar to that of the Mycenaean palaces in the c. 1200 BCE collapse. All of the major palatial centers on Eastern Crete and on most of the rest of the island were abandoned in the LMIIIB period in favor of more defensible, inland “refuge” sites in the mountains (Drews 1993: 29; Haggis 2005: 81; Tsipopoulou 2005: 306; Paschalidis 2009: 27).). These sites, like Karphi in Central Crete and Vasiliki in Eastern Crete, are further away from the fertile plains of the area and much more inaccessible. These new refuge sites mark a striking difference as compared to the settlement patterns of the LMIII A and IIIB periods, when settlements were usually much closer to the coasts. East Cretan abandoned sites like Mochlos and near-by Myrsini for the sites seen in the LMIIIC period like Vasiliki, Vrokastro and Vronda. This move to mountainous sites is often understood
to be a response to the crisis of the Bronze Age Mediterranean collapse (Nowicki 1999: 146). While this settlement change is well documented, erosion, dense vegetation and the limited excavations done on LMIIIC East Cretan settlements make it difficult to determine the exact number of settlement sites used in the LMIIIC period (Haggis 2005: 82).

The data that exists for LMIIIC settlement sites mainly comes from surveys done in the area (Haggis 2005: 81-85). While surveys can determine the approximate size and location of the settlements, they do not tell us much about the people who occupied them. Also, many of the excavations that were carried out on LMIIIC sites were done in the early 20th century. For example, Vrokastro, a site examined in this thesis, was excavated by Harriet Boyd between the years 1910 and 1912. The published information from this excavation is limited. She only included images of a select number of objects, included no pottery catalogue, no discussion on clay fabrics and some of the objects she excavated are missing entirely (Hayden 2002: 3). Far more settlement evidence comes from the Early Iron Age (Haggis 2005: 84). In order to bridge this gap of knowledge between pre-collapse Late Bronze Age and the Early Iron Age, there needs to be a better understanding of the LMIIIC period.

The lack of attention paid to Eastern Crete can be explained in part by the Knossos-centric model that has long been used to understand the island of Crete and to push a myth of Minoan unity (Smith 2002: 9,61). This misguided understanding of Crete has frequently led scholars to overlook and generalize the eastern portion of the island. The archaeological evidence available does not support this view of East Crete as a backwards subsidiary region during the LMIII period. Furthermore, this
dismissal is especially perplexing when one considers both East Crete’s major port and connection to the Near East during the earlier portions of the LM period and the later interesting history of Iron Age East Crete’s native Eteocretans.

Eastern Crete has often been treated as a lesser extension of Knossos, but this view of Crete as unified is flawed. Throughout the entirety of its history Crete has been highly regionalized and any attempt to understand the history of the island without taking this regionalism into consideration would be shortsighted. The geography of the island explains much of its segmented nature. Eastern Crete for example is cut off from the central portion of the island by the Thripti Mountain Range and only connected by the thin Isthmus of Ierapetra (Haggis 2005: 1). Robert Smith states that “regionalism denotes a condition, within a large geographical area, in which spatial divisions may be made based on difference in archaeological culture. An archaeological region, therefore, is defined by a particular archaeological culture” (2002: 50). In the LMIII period, Eastern Crete should certainly be considered its own “archaeological culture.” Despite connections with Central and Western Crete, as seen in the imported objects in the gazetteer below, Eastern Crete has its own burial customs and pottery styles (Smith 2002: 72). Eastern Crete must be studied without relying on comparisons with Knossos and other Minoan palatial centers.

There are four general assumptions that have been made about LMIIC Crete and Eastern Crete specifically that this thesis will examine: that it was disconnected from Knossos (Snodgrass 1971: 168; Bennet 1987), that it was disconnected from international trade (Nowicki 1999: 146), that it saw an abandonment and general population decline (Drews 1993: 29; Nowicki 1999: 146; Haggis 2005: 79; Haggis
2012: 81), and that there was an economic decline seen in the lack of trade and in a
decline in craftsmanship (Hogarth 1901: 145; Seager 1906: 130; Nowicki 1999: 168;
Haggis 2005: 5). This thesis will seek to challenge these assumptions and to examine
and explain the changes that took place in the LMIIIC period on Eastern Crete.

Exploring the Supposed “Wild Country East of Dikte”:

Although LMIIIC settlement data is limited, it may be possible to use tombs
and their assemblages to understand the inhabitants of Eastern Crete during this
period. Funerary customs changed as drastically as settlement patterns in the LMIIIC
period. As Pearson states, “the dead do not bury themselves but are treated and
disposed of by the living” (1999: 3). The objects placed in the tombs are a reflection
of the choices made by those burying the deceased and can therefore be used to
understand the livings’ access wealth and their customs (Pearson 1999: 84). These
striking changes show a distinct break from the LMIIIA and IIIB periods.

Archaeologists have long used burials and their assemblages to attempt to understand
funerary rituals in their historical context. This is done in order to explain why these
rituals were enacted as they were (Pearson 1999: 3). With the break between the
LMIIIB and IIIC periods, Eastern Crete sees a sudden change in burial customs. One
of the purposes of this thesis is to explain why these changes took place. There is a
wealth of information from large LMIIIA and IIIB cemeteries that provides a solid
basis for comparison against the few LMIIIC examples available.

Because of these changes, however, it is difficult to directly compare the
tombs and tomb assemblages of LMIIIA, IIIB and LMIIIC periods. Many drastic
changes take place in tomb architecture and the object types included in the
assemblages. For this reason, I developed a methodology for assigning value scores to objects and tombs drawing upon Giampaolo Graziadio’s 1991 paper on the Late Helladic shaft graves of Mycenae. This process will objectively examine the archaeological evidence and will exclude the narrative of collapse and scholarly assumptions that so frequently color interpretations of Late Minoan III East Crete. These changes need to be considered objectively along with the evidence of continuity in order to fully understand why they took place.

The first chapter of this thesis will explain the methodology used to assign value to the East Cretan tombs and objects studied in this project. I will begin by describing the methodology originally designed by Giampaolo Graziadio and the theoretical approaches he uses before defining my methodology and how it will be applied. The next chapter will be the gazetteer. In it is a list of all the tombs and objects that this thesis will be analyzing, organized by time period. Following this will be the analysis chapter, in which the data obtained through applying my methodology will be examined, explained and visualized. Finally, in the conclusion, I will discuss possible interpretations of the data from the analysis chapter and put these interpretations in their larger historical context for Eastern Crete.
Chapter 2: Methodology

The methodology described below has been designed in order to measure changes in wealth, foreign connection and ethnicity across the LMIII period. This will allow me to objectively examine the prevailing narrative of collapse that exists for Eastern Crete at the end of the Late Bronze Age. As mentioned above, it has long been assumed that Crete experienced an abandonment, an economic decline and a lack of foreign and intra-island connection during the LMIII period. Looking at wealth in the ways described below will allow objects of different classes, material and elaborateness to be examined without allowing modern biases to obstruct a deeper understanding of the LMIII period.

My analytic system is heavily influenced by an analytic methodology originally designed by Giampaolo Graziadio in his 1991 analysis of the Mycenaean Bronze Age shaft graves. I have also taken into consideration Graziadio’s updated version of this methodology from 2010 on Late Bronze Age Cypriot tombs. In his 1991 methodology, Graziadio created a wealth index using a multivariate analysis to judge the relative wealth of the Late Helladic 1 Grave Circles A and B of Mycenae. The Grave Circles represent a fantastic display of wealth and also a rare opportunity to explore a large group of wealthy, undisturbed burials. The graves were concurrently used and so Graziadio argues that he can, through examination of the tomb assemblages, reconstruct social stratification of the individuals buried during the distinct periods in which graves were used. This analysis allows him to use wealth and social stratification as a lens through which to examine international connections and changes that take place over the period in which the shaft graves were used.
While my thesis will not be directly looking at evidence of social stratification, I will use a similar methodology to look at intra-island connections, international connections, changes in ethnicity and changes in general wealth during the LMIII period on Eastern Crete.

Graziadio’s Approach:

As Graziadio states, it is impossible “to assign an absolute value to each object” (Graziadio 1991: 413). The goal of his analysis is instead “to establish a ranking within each functional category, differentiating the most precious… objects from average examples, without neglecting, however, a scale of the value for the intermediate items” (Graziadio 1991: 413). This system works well for his own data set, but requires adaptation for the East Cretan tombs that this thesis will be examining.

Graziadio first splits the tomb assemblages into functional categories. These categories are containers, weapons/armor, such as swords and daggers, tools, such as tweezers and knives, jewelry/ornamentation, such as clothing ornaments and headbands, and miscellaneous, which includes items such as ornate staffs, fragments of wooden boxes and a possible rattle. From these categories, he makes further subcategories that split the objects into more specific functional groups that are split up by material and object type. From these smaller subcategories, he attempts to discern value and symbolic worth through material, place of manufacture, size and quality. Containers are valued between 1 and 25, weapons between 10 and 25, tools between 5 and 15, jewelry up to 100 and miscellaneous between 15 and 25 (Graziadio 1991: 413).
For containers these subcategories are pottery, bronze/copper vessels, precious vessels and other. For pottery, he splits the vessels up by pottery type and place of manufacture. He then graphs, for each tomb, how much of the pottery wealth value is made up of pottery from the Cyclades, from Aegina, from local sources, etc. and how this quantity changes over time. In doing so, he is able to examine trade connections and how they change over the course of the period. For all the metal and other material vessels, he graphs what quantity of the wealth value is made up of the various types of metal and miscellaneous material over time. This allows him to make assertions about access to metals during the various phases of shaft grave use. He also uses these distinctions to assign different value to the container types. Pottery from further away is assigned a high value just as vessels of gold are assigned a higher value than those of bronze.

For the weapons/armor, tools, and jewelry/ornamentation categories the treatment is very similar. Objects are split into categories like swords and daggers or like head-bands and clothing ornaments so that Graziadio can trace how frequently different object types show up in each phase of use. This allows him to identify which objects types were used as status indicators and when. Here objects are assigned value through the material used, quantity of material used, and symbolic value. Objects that were rare or elaborately decorated with high quality materials were assumed to have had higher symbolic value (Graziadio 1991: 422). Also, because Graziadio identifies all of these objects as indicators of wealth as well, he can use the amount of wealth seen in each object category per grave as a general indicator of the wealth of the
grave in that period. Miscellaneous objects are included in the graph for jewelry and ornaments. They are also used as an indication of status.

Graziadio’s method depends heavily on symbolic worth and the value associated with it. He doesn’t specifically state that he assigns value points for symbolism but this idea of symbolic value is used to justify the value point ranges he gives for each of the functional object categories. He, for example, states that jewelry and weapons should be considered prestige objects and are therefore always more valuable than the “commonly found pottery” (Graziadio 1991: 413). Graziadio expands on this concept of symbolic value in his 2010 article on the Late Bronze Age tombs at Enkomi on Cyprus. In order to be more precise in his valuation of symbolic worth he separates objects into three object classes rather than into functional categories. The first category is for objects he classifies as “status indicators and/or objects with prevailing symbolic value.” The next contains “objects for religious or ritual use” and the final group is for “objects with prevailing utilitarian use” (Graziadio 2010: 32). Though I appreciate the value in examining symbolic value, I am analyzing tombs that were constructed and used more than 2,000 years later so I don’t feel equipped to make the same assumptions about symbolism. For example, he places perfumed oil in the utilitarian category, but there is evidence for the East Cretan assemblages that perfumed oils could be used both for utilitarian purposes and to treat bodies as a part of the burial ritual (Vavouranakis 2007: 155). Many objects cross over categories of status, utilitarian use and ritual use. Because of this, I will try to adhere to more tangible rubrics when applying value to objects.
Graziadio’s valuing of pottery, while it does an excellent job of tracing trade connections, neglects to account for the possible contents of containers and instead separates and assigns value to the vessels through material only. This is problematic for the East Cretan tombs as many have been disturbed and pottery is the only object type that is found in almost all of them. Pottery is clearly an important part of tomb assemblages in the area and needs to be dealt with accordingly. In neglecting to look beyond the material of his containers, Graziadio completely ignores the value of possible contents. A globular stirrup jar, for example, would have likely held expensive perfumes or unguents, while a pulled rim bowl would likely have been empty or used in funerary rituals (D’Agata 1997: 92; Pratt 2016: 54). Giving these two vessels similar values purely because they are made of the same material would misrepresent the number of valuable goods in many of the East Cretan tombs and would heavily skew the analysis in favor of tombs with non-pottery objects present.

Graziadio’s Theoretical Approaches:

Graziadio does not explicitly lay out his theoretical approaches but he acknowledges many of the problems inherent in valuing the tomb assemblages. Below is a discussion of the theory that relates to this process of assigning wealth to tombs assemblages that Graziadio neglects to include in his methodology. Wealth is culturally defined, or as Graziadio states, “a matter of convention,” and so a methodology for measuring value or wealth will be inherently flawed. Elizabeth DeMarrais in her 1996 article on power strategies states that:

> types of symbols may have high intrinsic worth based primarily on their ideological context, independent of their production costs. In these cases an object may be made of inexpensive materials (e.g., royal insignia) or have a unique context of production and use (e.g.,
ancient Olympic laurel wreaths). Similarly, skillfully crafted objects may have great value in a particular cultural context but in absolute terms cost little more than the food required by the artisans who produced them.

Graziadio attempts to deal with this by looking at the symbolic worth of objects and designating some object classes “major status indicators,” giving them higher ranks within the functional categories (Graziadio 1991: 413). He justifies this decision by stating that in a mortuary “context ‘artefact quantity and variety, especially exotic trade items,’ must be regarded as ‘symbolic designators of wealth’ and disparities in wealth are clearly related to differences in rank” (Graziadio 1991: 412). Another issue that Graziadio deals with is that the wealth of grave goods does not directly correlate to the wealth of the living. Goldstein does however state that “a person treated differentially in death was probably also so treated in life” (2009: 54 [emphasis mine]). Status and wealth may not be able to be directly correlated, but within Graziadio’s methodology he is stating that disparities in wealth do equate with disparities in rank (1991: 412). In Graziadio’s methodology, objects within a mortuary context are symbolic designators of wealth and the apparent wealth of objects within each grave is indicative of wealth disparities in the community that use the shaft graves.

Acknowledging this complication in measuring wealth, Graziadio designs categories, mentioned above, through which an object can be accorded value. The degree of energy expended within each of these categories indicates the total “value” of each object. He states that “the amount of human labor and energy expended on the preparation of a burial is a good indicator of the status of the deceased” (1991: 404). Joseph Tainter, in his 1978 paper titled “Mortuary Practices and the Study of
Prehistoric Social Systems,” proposes a theory stating that energy expenditure can be used to establish “rank patterns” (125). He states that a “higher social rank of the deceased individual will correspond to greater amounts of corporate involvement and activity disruption, and this should result in the expenditure of greater amounts of energy in the internment ritual” (Tainter 1978: 125). Tainter specifically develops this theory to apply to tomb architecture as he believes that it “provides a preferable alternative to interpretive frameworks that focus on only one dimension of mortuary ritual, such as grave associations” (Tainter 1978: 125). Despite his original intentions, the basic principle can still be applied to both assemblages and architecture. The more energy used to produce an object, the higher its status. Graziadio, in his methodology, is correlating status with wealth and so here, the higher the energy expenditure, the greater the assumed value of the object. The theoretical approaches explained above underlie each category within both Graziadio’s methodology and my own.

My Methodological Approach:

This section should be prefaced by stating that the value scores assigned to each object are not meant to assign qualitative judgments or to show that any one object is inherently better than another. Many tombs were disturbed in some way before excavation and there is also a lack of published information for the period. Because of this, it would be irresponsible to rank objects without access to complete assemblages from the time period. These value scores are instead meant to provide a comprehensive way to look at the extant data for this period. These scores will provide a larger framework through which to judge the changes in wealth across the
LMIII period and how these changes can be related to trade, economic prosperity and ethnicity.

I do not feel that splitting any of the object types into functional categories before analyzing them is necessary or useful. In an attempt to avoid unnecessary subjectivity these objects will first be assigned value based on material. While one may want to assume that all jewelry is more valuable than all tools, I do not feel comfortable making such assumptions. Any potential value difference between objects can be compensated for using the craftsmanship/labor/time category or the contents category later in the analysis process. The objects are split by functional type in the gazetteer purely for the sake of organization.

The East Cretan tombs that this thesis will be looking at are not nearly as contained in time or location as the Mycenaean shaft graves. These spread out tombs, however, pose an even more interesting and representative data set through which to study the time period. All of the tombs are within a few kilometers of each other.

![Figure 2.1 Map of LMIII Sites Studied in this Thesis](image)
around the Mirabello Bay region and were used across the Late Minoan (LM) III period (Figure 2.1). As discussed above, LMIIIA and IIIB are marked by large designated cemeteries associated with established palatial settlements. These cemeteries were, however, largely abandoned at the end of the LMIIIB period. The LMIIC period was a time settlement change and decreased population. As mentioned in the introduction, many of the LMIIIA and IIIB sites were abandoned in favor of more inland and defensible sites. Because of this stark contrast in settlement types, it is valuable to look at these later LMIIC tombs. They were built in close proximity to the larger LMIIIA and IIIB cemeteries so they give a sense of burial customs and tomb assemblages for the people of this region in this later period.

Further, Graziadio is dealing with a complete and contained data set. Grave circles A and B at Mycenae were almost entirely undisturbed at the time of excavation and so give him the ability to study their contents in their entirety and draw conclusions about social ranking. For example, he frequently makes use of internal justification for his ranking system. In looking at the relative value of grave stelae, for example, he identifies them as “status indicators” pointing to their “extreme rarity” within the shaft graves (Graziadio 1991: 411). I will not be able to justify the importance or value of any objects based on rarity within the tombs as many of the tombs I am dealing with were either disturbed or plundered. I can look at rarity of an object or material on the island during the LMIII period, but internal justification within cemeteries will not be possible. As Graziadio states, “any plundering of the grave… could invalidate estimates of wealth” (Graziadio 1991: 414). Many of the East Cretan tombs have been plundered. Because of this I cannot
use the data to justify the importance or value of any objects based on rarity. This combined with the fact that the East Cretan tomb data is fragmented and scattered would make using internal justifications very irresponsible.

Using the scores and justifications set out below, I will assign a value to each tomb, object and burial in order to track the changes in wealth over the course of the LMIII period. The total scores will be added up and compared in order to look at larger patterns of wealth for the period. These value scores are not meant to accurately represent the actual value of any given object but instead to provide a relative measure to facilitate comparison across the time period.

Methodology for Objects:

There are five potential categories from which an object can receive value: material, quantity of material, time/craftsmanship/labor, place of origin and value of potential contents. For pottery, each of these categories has a range of values from 0 to 100. For metals, faience, stone and the miscellaneous materials the time/craftsmanship/labor category is valued from 0 to 200. All other categories will, like for pottery, be on a scale of 0 to 100.

About 10% of the objects studied in this thesis are only briefly mentioned as existing in tombs but are not described further. I have not been able to find any images, measurements or descriptions for these objects. When this is the case, the object will receive the lowest possible score seen for objects of that type. I hope that doing this will reflect the actual value of tomb assemblages and prevent the less well documented tombs from being severely undervalued.
Material Category:

<table>
<thead>
<tr>
<th>Material</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
<td>100</td>
</tr>
<tr>
<td>Iron</td>
<td>80</td>
</tr>
<tr>
<td>Bronze</td>
<td>70</td>
</tr>
<tr>
<td>Lead</td>
<td>60</td>
</tr>
<tr>
<td>Faience</td>
<td>50</td>
</tr>
<tr>
<td>Stone</td>
<td>35</td>
</tr>
<tr>
<td>Pottery</td>
<td></td>
</tr>
<tr>
<td>Fine Fabric</td>
<td>20</td>
</tr>
<tr>
<td>Unspecified Fabric</td>
<td>12</td>
</tr>
<tr>
<td>Coarse Fabric</td>
<td>5</td>
</tr>
</tbody>
</table>

Gold will be given the highest score of 100 value points as it was the rarest and most difficult metal to work with. Next will be iron with a score of 80. This score is justified, like gold, mostly because of its rarity during this time period (Muhly et al. 2012: 119). It was long thought that neither Crete nor Cyprus had access to iron ore in the Late Bronze Age but this thinking has since been brought into question. Crete does have large iron ore deposits on the western end of the island though it is still unclear if these reserves would have been accessible in the Bronze Age (Muhly et al. 2012: 124). Iron objects were almost certainly being produced on Cyprus after the 12th century and Crete likely had access through a trade relationship with Cyprus (Muhly et al. 2012: 134).

Bronze was a far more common metal during the LMIII period. It will be given a score of 70 value points. Crete turned out beautiful bronze objects throughout the course of the Bronze Age, but, surprisingly, Crete did not have its own access to copper. Most of the copper used in the early periods came in the form of imported ingots (Muhly et al. 2012: 120). With the rising importance of bronze metallurgy, however, workshops that produced their own metallic bronze formed on the island.
The earliest known example is an Early Minoan (EM) workshop at Chrysokamino near Kavousi in Eastern Crete. This is the only known EM workshop on the island and the copper used was imported from the Cyclades (Muhly et al. 2012: 119). A Middle Minoan (MM) workshop at Malia shows the earliest known evidence of Cypriot copper. A high percentage of Anatolian copper was also used at this site. According to lead isotope analysis done in the last decade it seems that most of the Late Minoan copper was coming from north-west Cyprus, especially in the cases of Mochlos and Gournia (Muhly et al. 2012: 123; Ferrence et al. 2014: 1139). Extensive trade was needed in order for Cretans to access the metals used to make bronze. Without trade relationships, Cretans would not have been able to access bronze or iron. Bronze needed to be produced out of copper and tin, an extensive trade network was built up around its importation and it was clearly more difficult to work with than clay would have been. Lead is also given a relatively high score of 60. Lead isotope analysis indicates that lead was coming from the Lavrian mines on the Greek mainland (Ferrence et al. 2014: 1139). It shows up very infrequently with in the East Cretan tombs.

Faience and other vitreous materials are given a score of 50. This material was not as difficult to procure as some of the metals but still involved a very elaborate creation process. Marina Panagiotaki states that vitreous materials, such as glass, blue frit and faience, were not mass produced. They were made in specific workshops likely associated with the palaces and thus objects made from them would have been considered precious (Panagiotaki 2008: 34). Vitreous materials have a rich history on Crete and seem to have been produced on the island at a relatively early date. Faience
was originally created in Egypt and probably traded across the Mediterranean (Panagiotaki 2008: 36). Panagiotaki, however, argues that the EM and MM faience beads from Mochlos are early examples of Minoan experimentation in vitreous materials. This has not yet been definitively established as the cylindrical and spherical shapes of the beads produced are popular across the entirety of the Mediterranean (Panagiotaki 2008: 36). By MM III, however, faience workshops were well established on Crete with workshops showing up at Knossos and at Zakros (Panagiotaki 2008: 42). It is interesting that these workshops appear to be under palatial control. Elaborate relief beads and huge mosaics are found across the island.

Also, important to note for this analysis is that faience objects seem to have had strong connections with death and burial practices. Panagiotaki even goes so far as to state that it is unclear if faience objects were ever used by the living because they seem to show up exclusively in tombs and at shrines and cult sites (Panagiotaki 2008: 52). Faience was probably originally introduced as a cheap replacement for precious stones but over time it took on the same associations of wealth and luxury as the stones it was replacing. Panagiotaki states:

Little by little faience gained so much value as a material that it became more powerful than the precious stones. This power was related to its making: the magical transformation in the kiln of an ugly mass of sand and plant ash to a brilliant, light reflecting piece of art. Faience making thus became a magical and, therefore, a prestige technology associated with the palaces and the elite (2008: 54).

This association with burial and cult is also documented in Egypt and the Near East. Panagiotaki states, “in Egypt, the shimmering appearance of faience together with its original blue-green colour became ‘symbolic of life, rebirth, and immortality’,
and was naturally connected with cult and burial” (2008: 54). These potential symbolic qualities and the strong associations with the dead give faience and other vitreous materials a high score in this category.

In the LM period glass is introduced though it is only really used to produce small items, such as beads and is not frequently seen in the East Cretan tombs discussed here. Workshops across the island at Knossos, Megera and at the East Cretan settlement of Zakros were all in use during this period producing both glass and faience. Egyptian imported objects, however, are still seen in deposits from this period (Panagiotaki 2008: 47).

Stone is given a relatively low score of 35 and is placed under faience for the reasons stated above. Some of the stones will have been imported and so any apparent inequality between fine stones and faience will be balanced later in the other categories. All of the seals within the gazetteer, however, are made of steatite. The stone beads and other implements are frequently also of steatite or of serpentinite. Both steatite and serpentinite are easily worked and can be quarried on Crete (Becker 1976: 363- 355). These stone types will not receive any additional score for distance.

Clay is the most common material used in the Bronze Age and thus is given the lowest score. Wheel made pottery was first introduced to Crete in the Middle Minoan (MM) period and seems to have shown up in both palatial and non-palatial contexts (Crewe et al. 2012: 177). At its induction, pottery wheels were only used to produce finer and more luxurious pottery. By the LMIII period, however, wheels were being used to produce almost all pottery including coarse storage jars (Crewe et al. 2012: 179). Though there is no difference in production types, pottery does have a
slight range of score as fine clay would have been harder to access, produce and
would have been more aesthetically pleasing than clay of a rougher fabric. Fine fabric
clay will be given a score of 20 while rougher fabric will be given a score of 5. If the
fabric type is not mentioned in any sources, as is the case with most clay objects from
the East Cretan tombs, the material will be given an intermediate score of 12.

Size of Object/Quantity of Material Category:

The quantity of material category will be judged by splitting each of the
objects up by material. As with all of the other categories, objects will be assigned a
value between the scores of 0 and 100. Weight of the object will be used where the
measurement is available, as it is with most metal objects. In the case of pottery,
height and width will be used to determine the volume of the vessel. To make this
category less subjective, the highest quantities for each material will be determined
and this number will be assigned the score of 100 for the quantity category. Each
object’s volume or weight will then be entered into the formula below to determine its
individual score:

\[
\frac{x}{Highest \ Quantity} \times 100 = Value \ Score
\]

All numbers will be rounded to the neared whole number in order to simplify the
value scores.

Time/Craftsmanship/Labor Category:

The assignment of scores is purely based off of how elaborate an object is as
compared to others seen in the gazetteer. Pottery objects will be ranked from 0 to
100. As mentioned above, tombs will be ranked out of 500 here and non-pottery
objects will be ranked out of 200. Because of this category’s inherent subjectivity, no real method can be explained.

Place of Origin Category:

<table>
<thead>
<tr>
<th>Place of Origin</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levant/Egypt</td>
<td>100</td>
</tr>
<tr>
<td>Cyprus</td>
<td>80</td>
</tr>
<tr>
<td>Mainland and Cyclades</td>
<td>60</td>
</tr>
<tr>
<td>Rhodes and Nearby Islands</td>
<td>45</td>
</tr>
<tr>
<td>Central/ Western Crete</td>
<td>40</td>
</tr>
<tr>
<td>East Crete</td>
<td>20</td>
</tr>
<tr>
<td>Local/ Unspecified</td>
<td>0</td>
</tr>
</tbody>
</table>

This thesis assumes that further distances imply greater time and labor to get an object and so value can be assigned. As Knapp argued in 1998:

> The determining variables of distance and visibility… are both factors in what might be termed common knowledge, the absence of which defines the mysterious and exotic which … automatically lent an air of prestige to foreign goods (Manning et al. 2005: 11).

Manning and Hulin in their 2005 article do, however, point out a problem in assuming value based simply on an object's place of origin. They state that it is unclear “what is, and is not, perceived as special, valuable, or exotic by consumers/ recipients as opposed to being perceived as just a class of items or contents either largely or partly irrespective of provenance … in the same way as the name of a hospital of birth is not a useful way to describe a person’s overall life” (Manning et al. 2005: 1). Though this argument is worth considering, it is not necessarily useful when considering tomb assemblages and has in fact been directly contradicted by other scholars. Cynthia Colburn, for example, states that foreign and exotic objects were directly associated with higher status in Prepalatial (MM period) Crete. They represented one’s ability to access far-away and mysterious places and
the wealth required to do so (Colburn 2008: 206). These assumptions are supported by the way that exotic objects were used and displayed. She states that “exotic or nonlocal goods were often given considerable visibility because of their use in the creation and continued negotiation of elite identities” (Colburn 2008: 206). This can be seen on Crete, where in the Prepalatial period (MM period) foreign imported objects were frequently made into jewelry (Colburn 2008: 206).

Objects were placed in tombs for a reason and it can almost certainly be assumed that this reason includes the inherent value of the object. It has also been well documented that LM tombs frequently contained assemblages made up of valued prestige goods (Preston 2004: 325). Traveling took considerable time and labor which would not have been insignificant to Bronze Age East Cretans. For these reasons and because of Knapp’s and Colburn’s arguments above, this thesis will assume that some increased value can be presumed when an object is imported.

There will be seven distance zones each of which have been given a different value as seen in the table above. The first will be objects from the site or objects that are unspecified as to their origin. These objects receive zero additional points in this category. The next will be objects from East Crete in general. Though it can’t really be said that these objects are “imported,” they will still be marked as such in the gazetteer for ease of categorization. Objects from East Crete will be given 20 value points. Manning makes the claim that the maximum territory of direct rule and transport technology was 50 km for a “terrestrial staple finance system” in the ancient world (Manning et al. 2005: 11). Though this does not apply directly to Eastern Crete, Manning also states that the maximum territory of control for Ugarit, a major Bronze
Age port city, would have been approximately 60 km (Manning et al. 2005: 11). The extent of LMIIIC East Cretan direct rule would presumably have been similar to or lesser than that of Ugarit. Any major site on East Crete would be at about this distance from the sites this thesis is examining. It would have required some effort to transport goods but not very much.

Western and Central Crete will be a single category and will be given 40 value points. As mentioned above the maximum distance for land transport technology was about 50-60 km, so sea transport may have been easier for intra-island trade. For this reason, Eastern Crete would have been very separate from the Central and Western parts of the island. Crete also has the additional divide of extensive mountains. The terrain of the island naturally splits it into very separate regions, making central and western Crete very difficult to access by land from Eastern Crete. There is a good deal of distance and multiple mountain ranges between Eastern Crete and the rest of the island so it can be assumed that sea travel would have been necessary and frequently used for intra-island trade. Manning and Hulin provide an interesting example which can be used as an analogue for Crete. They state that, because of the landscape of Cyprus, the difference between East and South-Eastern Cyprus in the Bronze Age would have been quite defined. Because of the sea travel necessary to move between the two, the two parts of the island remained more or less independent of each other (2005: 11). This clear difference between parts of the island can also be seen on Crete.

Trade between Rhodes and other near-by island such as Akrotiri would have required a similar amount of effort as trade between other parts of Crete so this region
will only be given a slightly higher value of 45 points. In his 1993 analysis of Cycladic trade and connections, Broodbank used a technique of proximal point analysis in order to assess the relationships between different communities. Each community was assigned a dot and then linked to the three points nearest to it (Broodbank 1993: 321). Doing this revealed that, for the vast majority of sites, at least one of their nearest neighbors was located on another island. It is easy to see the sea as a barrier to be crossed but for island inhabitants of the Late Bronze Age, it was as much a means of transportation as it was a barrier. Though none of the Cycladic islands are closer to the shores of Eastern Crete than central and western Crete are, the travel to these places would have required nearly equal effort.

Trade to the Mainland and Cyclades will be given a score of 60 value points. According to a map provided by Manning and Hulin (Figure 2.2), when sailing from Crete to the Mainland, some body of land would always have been visible. This high visibility would have made the route far easier to navigate and would have made the Mainland less “mysterious” than the Near East or Cyprus (Manning et al. 2005: 45). Though Cyprus is technically located in the Aegean it was far more connected with the Near East than it was with the Aegean region hence its higher value score of 80 points. This relationship with the Near East is in part because of its proximity. There was extensive trade up and down the Levantine coast. Cyprus would have been visible to most of the boats along these trade routes making trade between the Near East and Cyprus relatively simple. (Manning et al. 2005: 9). In contrast, direct routes from Cyprus to Crete and the Mainland would have involved long stretches of open water and thus would not have been easy routes to travel.
Trade between Crete and Cyprus happened in two ways. Routes from the Near East would have passed and possibly stopped at Cyprus on their way to Crete allowing ships to stop at both islands and exchange goods (Manning et al. 2005: 10). It also seems that there was more direct trade between the two islands as Crete and Cyprus had an established trade relationship as early as EM I based on the exchange of raw metal for the creation of bronze (Muhly et al. 2012: 119; Manning et al. 2005: 10). Because of this dual trade relationship, it is difficult to determine if Cypriot objects inherently had more value than those coming from the Levant or Egypt. I am going to assume that because a direct trade relationship between the two islands did exist separate from Levantine trade, that Cypriot items would have been seen as slightly less valuable than those from the Near East.
Last there are objects imported from Egypt which will receive a score of 100 value points. The trip between Egypt and Crete was arduous and long. It depended heavily on favorable winds and tides and there are very few points where Crete would have been visible to sailors traveling from Egypt (Manning et al. 2005: 8, 45).

Contents Category:

<table>
<thead>
<tr>
<th>Contents Category</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wine, Olive Oil and Food</td>
<td>30</td>
</tr>
<tr>
<td>Perfumes and Unguents</td>
<td>75</td>
</tr>
<tr>
<td>Incense</td>
<td>90</td>
</tr>
</tbody>
</table>

This category applies to closed vessels as well as to serving and drinking vessels that are presumed to have been used in ritual feasts for the dead. The possible contents will be sorted by work put into preparation of the contents and access to the contents. The first category will be for wine, food and olive oil and will have a score of 30 points. The second will be for perfumes and unguents and will have a score of 75 points and the third will be for incense and will have a score of 90 points. Incense are given the highest value score because they were not produced on Crete or elsewhere in the Aegean. They were all imported from the Levant or Egypt (Knapp 1991: 51; D’Agata 1997: 94).

A vessel’s possible contents can be determined through the vessel’s shape and size. Wine and olive oil are considered bulk items and were shipped in larger transport vessels, while luxury contents, like perfume, were shipped in small vessels (Knapp 1991: 29). The score for containing incense will be assigned solely to the thymiaterion as this is the only vessel that was specifically made for the burning of
incense. It is believed that the incense and thymiaterion were used in a ritual associated with the dead (D’Agata 1997: 93). On Crete, however, many of the thymiaterion show no evidence of burning. It has been suggested that this is because the thymiaterion was an elite item in itself (Georgiou 1979: 435; D’Agata 1997: 93). I have no information on whether or not the thymiaterion in the East Cretan tomb assemblages have evidence of burning and so it will be assumed that all of them contained incense or were used to burn incense.

Perfumes and unguents are given the next highest score because they must be produced by skilled workers in specialized workshops (Birney, Koh 2017: 9). Recent organic residue analysis on an LMIIIC globular stirrup jar from Tourloti in Eastern Crete has revealed that nearly all of the ingredients used to produce the perfume it contained were local products. Although the local nature of the product and its ingredients could make the contents seem less mysterious or exotic, it is still clear that perfume was highly valued. Indicative of this, are stirrup jars from LMIB Mochlos. Organic residue analysis of these LMIB globular stirrup jars has shown that the LMIIIC perfume’s chemical composition is almost identical to those seen in LMIB stirrup jars from a perfume workshop at Mochlos (Birney, Koh 2017: 10). A tradition for perfume production, a process that required complex knowledge of ingredients and their interactions, crossed the span of the LM period despite a huge decrease in population size and the abandonment of most major palatial centers. It was clearly a highly valued and desired commodity.

Perfume and unguents have been associated with flasks, alabastra, pyxides and small stirrup jars in elite Mainland burials and so I will assume that these vessels
were used for holding perfume in East Crete as well (D’Agata 1997: 92; Pratt 2016: 54). There is also some evidence that stirrup jars were produced specifically to hold luxury contents. Early stirrup jars were outfitted with an additional handle and had small knobs on the spout. The additional handle would have been used to tie on labels and the small knobs for securing stoppers (Pratt 2016: 36). These mechanisms imply that the stirrup jar was introduced to better control and identify expensive goods as compared to bulk goods in amphora. These bulk goods were not as difficult to access or make and so are given the lowest contents score. This score will be assigned to larger stirrup jars, amphora, and cooking and serving vessels.

Methodology for Tombs:

Tomb architecture is assigned value through slightly different categories than those for objects in the assemblages. These categories will be tomb type, treatment of body within tomb, size and time/craftsmanship/labor. Below are tables that demonstrate how value is assigned in the first two categories. The craftsmanship category will be slightly different from that above. Instead of being out of 100 or 200, this category will be out of 500 in order to reflect the amount of energy required to build or dig a tomb.

Tomb Architecture:

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tholos</td>
<td>100</td>
</tr>
<tr>
<td>Chamber</td>
<td>85</td>
</tr>
<tr>
<td>Pithos</td>
<td>65</td>
</tr>
<tr>
<td>Reuse of an Old Building</td>
<td>35</td>
</tr>
<tr>
<td>Cave</td>
<td>20</td>
</tr>
</tbody>
</table>
Tomb types will receive a score based on their construction type. As stated above in the energy expenditure section, the justification for ranking an object based on its quality comes from Tainter’s theory of energy expenditure. Based on this theory, it should be expected that higher energy expenditure on behalf of the deceased individual will be measurable based on the quality and size of the tomb architecture and in the method of dealing with the body (Tainter 1978: 125). Graziadio uses a similar justification for his analysis of the shaft graves, stating “it is generally agreed that the amount of human labor and energy expended on the preparation of a burial is a good indication of the status of the deceased” (1991: 404). Although it cannot be stated that status is directly related to wealth, this analysis will assume that energy spent on building the tomb can be related to inherent value of the tomb.

Tholos tombs, being the most elaborate structures, will receive a score of 100. There are two types of tholoi seen on Eastern Crete during the LMIIIC period (Figures 2.3 and 2.4). Both, however will receive the same score as they are similar in size and construction. The first is the round based tholos seen in this thesis at Vasiliki. It is a corbel vaulted tomb built entirely above ground. The other type has a rectangular based and is built into the ground. This tomb type is also corbel vaulted. Both typically include a dromos (Eaby 2007: 197). Next are chamber tombs which will be valued at 85. These receive a lower score because unlike tholoi, they are dug entirely into soft limestone bedrock. No materials need to be transported in order to build them. Tholos and chamber tomb burials receive scores that are close together as it can be difficult to determine which tomb type actually required more energy expenditure. The Agios Theodoros tholos, for example, is slightly smaller in size than
Tomb 15, the largest chamber tomb at Mochlos Limenaria. The tholos tombs at Agios Theodoros has a diameter of 2 m while Tomb 15 measures 2.05 m by 2.35 m (Seager 1906: 130; Soles 2005: 158). After the time/craftsmanship/labor value is applied to reflect the difference in size, these two tombs will receive very similar total value scores. These similarities will be noted and played around with in the analysis section.

Figure 2.3: Floor Plan and Cross Section of Mouliana Tomb A, a tholos with a rectangular base (Xanthoudides 1904: 23).

Figure 2.4: Floor plan of the Vasiliki Kamaraki Tholos Tomb with a round base (Tsipopoulou 2003: 87).
Next are pithos burials at 65 value points. Pithos burials are simple pits with the body interred within a large pithos, or storage vessel. This receives the next highest score as both making the pithos and digging the pit in which to put the pithos would have required significant energy expenditure. Reuse of old buildings at 35 and use of natural caves and rock formations at 20 receive low scores as very little energy expenditure goes into either of them. Any unusual tomb types that do not fall into these categories will be noted and assigned values that reflect the work put into building them.

Body Treatment:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cremation</td>
<td>100</td>
</tr>
<tr>
<td>Secondary with Container</td>
<td>75</td>
</tr>
<tr>
<td>Secondary No Container</td>
<td>50</td>
</tr>
<tr>
<td>Primary with Container</td>
<td>25</td>
</tr>
<tr>
<td>Primary No Container</td>
<td>0</td>
</tr>
</tbody>
</table>

Tombs are also assigned value from treatment of the body. Most of the tombs studied here do not provide detailed information about primary and secondary burial. When this is the case, assumptions will be made using Eleni Hatzaki’s argument about standard body treatment for the period. There are five possibilities seen in the East Cretan tombs as seen above. Eleni Hatzaki in her 2012 article states that burials found within larnakes and built tombs are usually secondary burials (Hatzaki 2012: 311). Secondary burials were used universally in the MMI through MMIIB periods but saw a decline in the MMIII period during which there are almost no archaeologically visible burials (Hatzaki 2012: 308-9). LMIIIA marks the return of archaeologically visible burials. Built tombs are used frequently, larnakes became
popular and secondary burials along with them (Hatzaki 2012: 309-311). Pithos burials were, on the other hand, typically primary burials and do still appear in the archaeological record of the LMIII period alongside chamber and tholos tombs (Hatzaki 2012: 309).

Primary burials required less effort on behalf of the buriers as there was no second step in placing the body, thus it is not given a very high value score. Cremation receives the highest number of value points as it would have taken the most labor and energy. Burning a body is a long process that essentially ‘kills’ large amounts of fuel (Hatzaki et al. 2012: 311). A cremation is costly, time consuming and required a certain level of community planning (Paschalidis 2009: 17). It places emphasis on the spectacle and ritual of a burial while inhumation places more emphasis on “perpetual preservation” (Hatzaki 2012: 311). It is important to note that this category is assigning value based purely on the amount of effort expended in dealing with the dead. There is no way for me to assign value to either the concept of perpetual preservation or to the effect of cremation as a spectacle. This thesis makes no assumptions about how these two burial types would have been viewed by those performing them.

Problems and Challenges:

While the methods for this thesis do make an effort to avoid subjectivity, it is very difficult to be completely objective especially when giving value for the time/craftsmanship/labor category. In comparing a tholos tomb to a kylix, it is quite easy to determine which one deserves more value but when looking at those objects which are more closely related, such as a ring and a bracelet or fibula, it can be more
challenging. This category will frequently overlap with the quantity of material category as the size of an object is one of the many ways that labor can be determined. The other value categories will also add appropriate value and will prevent this subjectivity from having too much effect on the overall values of objects. While it would be preferable to have no levels of subjectivity, it is unavoidable here.

There is, also, a problem in how metal objects are dated. Older metal objects could have been melted down to create new ones. The analysis used to determine where metals originate is not able to test for this possibility. If a bronze object or copper ingot was traded to Crete in the LM I period and then reused to make something from one of the LM III tombs, one could no longer consider that bronze as being imported. Over the generations it would become “local” bronze even if analysis reported it as being from Cyprus or elsewhere (Muhly et al. 2012: 123). Despite this possible confusion, bronze will retain its high material score because of the difficulty involved in working with it.

This question of old objects being reused also applies to other tomb objects. For example, when looking at a tomb that spans multiple periods, all LMIIIA pottery vessel value scores are totaled in the LMIIIA period total score. There is, however, the possibility that an LMIIIA vessel could be deposited in a tomb during the LMIIIB period as an heirloom. It is very difficult to tell if this is the case in any of the tombs in this thesis.

Another issue in tombs used across more than one period is how to assign the value of tomb architecture. After the scores of all objects from a tomb have been calculated, they will be added together and then to the score for their tomb’s
architecture and treatment of the body in order to determine the total value score for
the tomb assemblage. This will be done separately for each time period so that the
periods can be compared. When dealing with objects, this can be done with ease, but
what if a large chamber tomb is used in both the LMIIIA and IIIB periods and
contains five individuals? How does one determine which period or which individual
the value of tomb architecture applies to? The tomb was clearly built in the earlier
period for the use of the earliest burials but it must be assumed that the person/people
buried there in LMIIIB were also associated with that wealth or value in some way.
The tombs continue to have a very high value even if the energy is not expended
again for each subsequent individual. Because of this, the value of the tomb will be
given to each time period in which it is used.

Another thing to consider when choosing to study a period through tombs is
that we only have access to archaeologically visible tombs and that visible tombs tend
to be wealthy. This has the potential to skew data in favor of viewing a community as
being much wealthier overall than it truly was. This thesis, however, is comparing the
archaeologically visible burials of pre-collapse Eastern Crete with those of post-
collapse Eastern Crete. The potential bias of looking at archaeologically visible
burials occurs on either side of the break that this thesis is examining.

Subjectivity is inevitable in this process. My decisions for the value category
rubrics will of course influence how objects are ranked. Because my rubrics cannot be
viewed as an accurate representation of how objects were valued in the LMIII period,
there will be objects that receive a value score that do not reflect the value they
should have. This analysis, however, will not only look at total value scores for each
period but also at individual object classes. By comparing multiple object classes, this analysis will be more able to give an accurate picture of the LMIIIA, IIIB and IIIC periods. This will be an imperfect process but the hope of this thesis is that an organized analysis of the data available will provide a far greater understanding of the Late Bronze Age on Eastern Crete than currently exists.

Example of Methodology:

P.1

- **Material:** Clay Type → Unspecified Clay → 12 points
- **Size of Object/Quantity of Contents:** 606 ml / 18328 ml = 0.33*100 → 3 points
- **Time/Craftsmanship/Labor:** 30 points
- **Place of Origin:** Palaikastro → 20 points
- **Contents:** Wine or Olive Oil → 30 points

The example above is for P.1 from Tomb 1 at the Mochlos Limenaria cemetery. First, the piriform stirrup jar’s material is identified. It is made of clay but I do not know anything about the clay’s fabric. For this reason, it is assigned the value for unidentified fabric type which is 12 value points. I then calculated the size of the object. For clay vessels, this was done by calculating the volume of the object. The volume was then divided by the volume of one of the largest objects in the gazetteer. This number was then multiplied by 100 and rounded to the nearest whole number so that the score could be determined. The time/craftsmanship labor category’s score was determined by looking through the gazetteer and determining how the vessel compared to others of its type. This stirrup jar is decorated and appears wheel made, but its decoration is not as elaborate as most seen on other stirrup jars. Because of this, it was given 30 value points. The stirrup jar was manufactured at Palaikastro in East Crete. This means that it receives 20 value points for the energy expended on
transport. Finally, because it is a relatively large piriform jar it would likely have held either wine or olive oil. From this, the jar received another 30 value points. The scores from each category were then added together to determine the total value score of 95 value points. This same process was then applied to every object and tomb in the gazetteer.
Chapter 3: Gazetteer

This chapter contains a list of the tombs and their assemblages from which the data of this project is collected. The tombs will be listed by date and site with tomb architecture being described in the section that corresponds with the period during which the tomb was first used. Each entry will include the site name, tomb number or name and the date in bold. The objects from within the tomb will be assigned sequential numbers within their category. To differentiate different object groups, each group will have a letter before their numbers. For example, the first clay vessel will be assigned P.1 (for pottery). Tools will have a T, weapons a W, jewelry and personal ornamentation objects a J, burial containers a B, and miscellaneous objects an M. The entry for each object will include the object number followed by the objects museum identification number in parenthesis. All numbers are associated with the Siteia Museum unless otherwise stated. This will be followed by the date of the object and then a brief description of the object type, origin and decoration. Any object not from the immediate local area will be considered “imported” regardless of distance traveled. The center column will provide an image, if one is available, and the far-right column will include any important measurements available for the object. All measurements are in meters unless otherwise stated. Tombs that were plundered or otherwise disturbed have been specified in their tomb description.

The majority of the objects have been conclusively dated but those that have not been will be included in a general Late Minoan section at the end of the chapter. These objects will be taken into consideration during analysis. Additionally, the original context of some of the objects is unknown. These will be placed at the end of
the section on the period to which they have been dated.

LMIIIA (1390-1360 BCE) (based on Smith 2002: 303)- This section will include LMIIIA1, LMIIIA2 and LMIIIA2-III B objects.

Mochlos Limenaria:

The cemetery at Limenaria is located on the northern coast of Crete across from the southern end of the island of Mochlos and the pottery within it dates from LMIIIA1 to late LMIIIB. Tombs 1-9 were excavated in 1986 by Nikos Papadakis and were excavated as a part of a rescue mission while the site was under construction. The remaining tombs, 10-31, were excavated in 1993, 1994, 1998 and 2004 by a Greek American team. Because of the nature of the 1986 excavations, no physical anthropologist was present and almost all the skeletal remains were ignored and discarded. Some of the finds are also difficult to assign to a tomb and the dromoi weren’t very well documented (Soles 2008: 132). Jeffery Soles argues that because only 13 LMIIIA1 vessels were found and because they were all within tombs that also contained later LMIII pottery, that they should be viewed as heirlooms. Based on this, he wants to give the Limenaria cemetery a slightly later date of LMIIIA2 (Soles 2008: 130). This seems rather unlikely. Soles does admit that it is also possible that LMIIIA1 burials are present but indistinguishable from the later burials and that they may have been overlooked (Soles 2008: 130). The evidence provided by Robert Angus Kermode Smith III supports this second explanation, though Smith argues that the LMIIIA1 burials are not indistinguishable from later burials and are in fact quite prevalent at the cemetery. He dates at least 10 of the 31 tombs definitively to the LMIIIA1 period and another four as possibly being from the LMIIIA1 period (Smith
Smith also presents far less evidence for LMIIIIB tombs than Soles does. Based on Smith’s chronology only 7 of the tombs continue to be used in the LMIIIIB period. The vast majority seem to go out of use after the LMIIIA2 period. The dating provided by Smith is the more convincing of the two. He provides a more detailed gazetteer and more thorough analysis of each datable vessel.

This thesis will assume that Smith’s dating of the tombs and objects is the correct one and will use his chronology. There are also some discrepancies between Soles and Smith in terms of which tomb an object is assigned to. Soles published his work three years later than Smith and so if he assigns a tomb to an object that Smith leaves unspecified, I will trust Soles’ information. Another smaller cemetery, located at Myrsini, is also associated with the settlement at Mochlos though the one at Limenaria seems to have been the main one. A total of 31 tombs were excavated between 1986 and 2004, while only 12 were found at Myrsini. The hill on which the tombs are built is 75 m above sea level, giving it a grand view of Mochlos and the surrounding area. It is composed mostly of a soft limestone called kouskouras making it relatively easy for the tombs to be dug into the bedrock (Soles 2002: 129). Only four of the 31 tombs weren’t chamber tombs but despite this overwhelming similarity in construction, the tombs differ greatly in size, types of burial goods included and in types of burial containers used. Some of the tombs from this cemetery contain no pottery and thus were not able to be dated. These are included in the LMIIIA section for ease of numbering. They will be dealt with separately from the LMIIIA tombs in the analysis section.
Tomb 1 (Tomb A)

This is one of the larger tombs on Limenaria hill. It is a chamber tomb cut into the side of relatively soft limestone bed rock. The tomb had no stomion and its dromos is relatively short with a length of 1 m and a width of 0.9 m. A small step of 0.15 m leads from the dromos into a roughly circular chamber that is 1.60 m in diameter with a ceiling 1.20 m above floor level (Soles 2008: 133). 22 clay vessels were found within the tomb which mark its period of use as **LMIIIA2- LMIIIB** (Smith 2002:302). Two burials were found within the tomb, one of which was located in a large larnax. No other types of grave goods were found.

Pottery:

P.1 (11082)- **LMIIIA2**, Piriform stirrup jar. This vessel is imported from Palaikastro. It is painted with a nested triangle motif and horizontal lines. (Soles 2008: 134; Smith 2002: 482)

- Height: 0.132
- Max. Diameter: 0.105
- Rim Diameter: 0.022
- Base Diameter: 0.036
- Handle Width: 0.012
- Handle Depth: 0.007

P.2 (11116)- **LMIIIA2-IIB**, Squat Stirrup Jar. This is a local vessel. It is painted with horizontal stripes, cross-hatched wavy lines and an isolated whorl shell (Soles 2008: 134; Smith 2002: 482).

- Height: 0.095
- Max. Diameter: 0.13
- Rim Diameter: Broken
- Base Diameter: 0.042
- Handle Width: 0.011
- Handle Depth: 0.008
P.3 (11137)- LMIIIA2-IIIB, Squat Stirrup Jar. It was imported from Central Crete. It is painted within multiple zones with wavy lines, zigzags, and a papyrus flower (Soles 2008: 134; Smith 2002: 482).

Height: 0.13
Max. Diameter: 0.188
Rim Diameter:
Broken
Base Diameter: 0.08
Handle Width: 0.015
Handle Depth: 0.01

P.4 (11125)- LMIIIA2-IIIB, Storage/Transport Stirrup Jar. Local Vessel. It is painted with spirals on the shoulder and horizontal lines on the body (Smith 2002: 483; Soles 2008: 134).

Height: 0.212
Max. Diameter: 0.186
Rim Diameter: 0.042
Base Diameter: 0.117
Handle Width: 0.029
Handle Depth: 0.014

P.5 (11123)- LMIIIA2-IIIB, Squat Stirrup Jar. Imported from Central Crete. Painted with nested triangles and zigzags. The shoulder is heavily patterned and the body is painted with concentric circles (Smith 2002: 483; Soles 2008: 134).

Height: 0.117
Max. Diameter: 0.14
Rim Diameter:
Broken
Base Diameter: 0.05
Handle Width: 0.012
Handle Depth: 0.008

P.6 (11111)- LMIIIA2-IIIB, Amphora. Local vessel. Painted with concentric circles spaced irregularly on the body of the pot (Smith 2002: 478; Soles 2008: 134).

Height: 0.228
Max. Diameter: 0.2
Rim Diameter: 0.056
Base Diameter: 0.106
Handle Width: 0.03
Handle Depth: 0.011

P.7 (11136)- LMIIIA2-IIIB, Shallow Bowl with a single handle. Local Vessel. This vessel is undecorated (Smith 2002: 479; Soles 2008: 135).

Height: 0.051
Max. Diameter: N/A
Rim Diameter: 0.154
Base Diameter: 0.041
Handle Width: 0.013
Handle Depth: 0.01
P.8 (9369)- LMIIIA, Composite Vessel - double bowl. Imported from Knossos. Soles wants this vessel to be an heirloom because of its early date, however given Smith’s chronology this cannot be the case. Smith also states that this vessel is from an unknown deposit. It will be placed under the Tomb 1 entry because this is the deposit that Soles identifies for the vessel in 2005. It is painted with a simple nested zigzag (Soles 2008: 134; Smith 2002: 504).

P.9 (11132)- LMIIIA2- IIIB, Miniature Jug. Local Vessel. It is undecorated (Smith 2002: 481; Soles 2008: 134).

P.10 (11131)- LMIIIA, Miniature jug with trefoil mouth. Local Vessel. It is painted with an FM 18 flower and a crosshatched triangle (Smith 2002: 481; Soles 2008: 134).
P.11 (11135)- LMIIIA2-IIIB, Miniature Jug. Local Vessel. It is undecorated (Smith 2002: 481; Soles 2008: 134).

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>0.103</td>
</tr>
<tr>
<td>Max. Diameter</td>
<td>0.084</td>
</tr>
<tr>
<td>Rim Diameter</td>
<td>0.068</td>
</tr>
<tr>
<td>Base Diameter</td>
<td>0.047</td>
</tr>
<tr>
<td>Handle Width</td>
<td>Broken</td>
</tr>
<tr>
<td>Handle Depth</td>
<td>Broken</td>
</tr>
</tbody>
</table>

P.12 (11133)- LMIIIA2-IIIB, Conical Cup. Local Vessel. It is undecorated (Smith 2002: 480; Soles 2008: 134).

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>0.05</td>
</tr>
<tr>
<td>Max. Diameter</td>
<td>N/A</td>
</tr>
<tr>
<td>Rim Diameter</td>
<td>0.11</td>
</tr>
<tr>
<td>Base Diameter</td>
<td>0.037</td>
</tr>
<tr>
<td>Handle Width</td>
<td>N/A</td>
</tr>
<tr>
<td>Handle Depth</td>
<td>N/A</td>
</tr>
</tbody>
</table>

P.13 (11134)- LMIIIA2-IIIB, Conical Cup. Local Vessel. It is undecorated (Smith 2002: 480; Soles 2008: 134).

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>0.051</td>
</tr>
<tr>
<td>Max. Diameter</td>
<td>N/A</td>
</tr>
<tr>
<td>Rim Diameter</td>
<td>0.107</td>
</tr>
<tr>
<td>Base Diameter</td>
<td>0.036</td>
</tr>
<tr>
<td>Handle Width</td>
<td>N/A</td>
</tr>
<tr>
<td>Handle Depth</td>
<td>N/A</td>
</tr>
</tbody>
</table>

P.14 (11087)- LMIIIA2-IIIB, Conical Cup. Local Vessel. It is undecorated (Smith 2002: 480; Soles 2008: 134).

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>0.046</td>
</tr>
<tr>
<td>Max. Diameter</td>
<td>N/A</td>
</tr>
<tr>
<td>Rim Diameter</td>
<td>0.115</td>
</tr>
<tr>
<td>Base Diameter</td>
<td>0.044</td>
</tr>
<tr>
<td>Handle Width</td>
<td>N/A</td>
</tr>
<tr>
<td>Handle Depth</td>
<td>N/A</td>
</tr>
</tbody>
</table>
P.15 (11083)- LMIIIA2-IIIB, Conical Cup. Local vessel. It is undecorated (Smith 2002: 480; Soles 2008: 134).

- Height: 0.046
- Max. Diameter: N/A
- Rim Diameter: 0.085
- Base Diameter: 0.037
- Handle Width: N/A
- Handle Depth: N/A

P.16 (11128)- LMIIIA2-IIIB, Pulled-Rim Bowl. Local Vessel. The rim is dipped (Smith 2002: 479; Soles 2008: 134).

- Height: 0.079
- Max. Diameter: N/A
- Rim Diameter: 0.137
- Base Diameter: 0.045
- Handle Width: N/A
- Handle Depth: N/A

P.17 (11114)- LMIIIA2-IIIB, Pulled-Rim Bowl. Local Vessel. Dipped with drops falling on the interior of the vessel (Smith 2002: 479; Soles 2008: 134).

- Height: 0.114
- Max. Diameter: N/A
- Rim Diameter: 0.174
- Base Diameter: 0.057
- Handle Width: N/A
- Handle Depth: N/A

P.18 (11090)- LMIIIA2-IIIB, Pulled-Rim Bowl. Local Vessel. The entire vessel is dipped (Smith 2002: 479; Soles 2008: 134).

- Height: 0.093
- Max. Diameter: N/A
- Rim Diameter: 0.146
- Base Diameter: 0.049
- Handle Width: N/A
- Handle Depth: N/A
P.19 (11091)- LMIIIA2-IIIB, Thymiaterion base. Local Vessel. The vessel is undecorated (Smith 2002: 483; Soles 2008: 135).

Height: 0.04
Max. Diameter: N/A
Rim Diameter: 0.075
Base Diameter: 0.09
Handle Width: 0.014
Handle Depth: 0.012

P.20 (9378)- LMIII A, Thymiaterion lid. Local Vessel. This is the lid to vessel P.19. They have different dates so it is possible that the original base broke and a new one was remade for the highly decorated lid. It is painted with parallel slashes and concentric semicircles (Smith 2002: 483; Soles 2008: 135).

Height: 0.088
Max. Diameter: N/A
Rim Diameter: 0.04
Base Diameter: 0.091
Handle Width: N/A
Handle Depth: N/A

P.21 (9375)- LMIII A, Globular Askos. Local Vessel. Soles attributes this askos to Tomb 1 while Smith states that its deposit is unknown. It is painted with a ladder slash motif, grouped chevrons, nested triangles and nested arcs (Smith 2002: 503; Soles 2008: 135).

Height: 0.189
Max. Diameter: 0.177
Rim Diameter: 0.046
Base Diameter: 0.092
Handle Width: 0.022
Handle Depth: 0.013

P.22 (11121)- LMIIIA2-IIIB, Piriform Jar. Local vessel. The vessel is dipped (Smith 2002: 481; Soles 2008: 135).

Height: 0.152
Max. Diameter: 0.149
Rim Diameter: 0.097
Base Diameter: 0.058
Handle Width: 0.021
Handle Depth: 0.008
Burial Containers:

B.1 (11370)-
LMIIIA2-IIIB, Tub Shaped Larnax. This larnax has a single drainage hole and 4 handles. It is painted with wavy lines and papyrus flowers (Soles 2008: 134; Smith et al. 2011: No page numbers).

Length: 1.09 m. Unfortunately, Soles does not provide any measurements beyond length for burial containers.

Tomb 2 (Tomb B)

Tomb 2 is also a chamber tomb. It is slightly larger than Tomb 1 and is located next to it. The chamber itself is an irregular circle measuring about 2 m by 1.85 m with the ceiling preserved at 1.45 m above the floor level. The dromos is 3.6 m in length and 1 m wide and like Tomb 1 has a 0.15 m step leading from the level of the dromos into the tomb chamber. Two burials were found in the tomb one of which was inside a chest larnax (Soles 2008: 136). Tomb 2 has a long period of use spanning from LMIIIA1 to LMIIIB.

Pottery:
P.23 (11126) - LMIIIA-IIIB, Storage/Transport Stirrup Jar. The vessel is imported from Central Crete. The upper part of the body contains a deconstructed octopus. Compact wavy lines cover the shoulder (Soles 2008: 137; Smith 2002: 489).

Height: 0.278
Max. Diameter: 0.29
Rim Diameter: Broken
Base Diameter: 0.08
Handle Width: Broken
Handle Depth: Broken

P.24 (9346) - LMIIIA2-IIIB, Squat Stirrup Jar. Local vessel. It is painted with compact wavy lines, nested arcs, and a tricurved arch wavy line (Soles 2008: 137; Smith 2002: 488).

Height: 0.08
Max. Diameter: 0.106
Rim Diameter: 0.019
Base Diameter: 0.032
Handle Width: 0.012
Handle Depth: 0.006

P.25 (11086) - LMIIIA-IIIB, Conical Cup. Local Vessel. It is undecorated (Soles 2008: 137; Smith 2002: 486).

Height: 0.036
Max. Diameter: N/A
Rim Diameter: 0.109
Base Diameter: 0.035
Handle Width: N/A
Handle Depth: N/A

P.26 (11127) - LMIIIA-IIIB, Conical Cup. Local vessel. It is undecorated (Soles 2008: 137; Smith 2002: 486).

Height: 0.043
Max. Diameter: N/A
Rim Diameter: 0.109
Base Diameter: 0.042
Handle Width: N/A
Handle Depth: N/A

P.27 (9352) - LMIIIA2-IIIB, Pulled-Rim Bowl. Local vessel. The rim of the vessel is dipped with some drops running down the exterior of the bowl (Soles 2008: 137; Smith 2002: 484).

Height: 0.06
Max. Diameter: N/A
Rim Diameter: 0.109
Base Diameter: 0.032
Handle Width: N/A
Handle Depth: N/A
P.28 (9382) - LMIIIA-IIIB, Pulled-Rim Bowl. The bowl is imported from Palaikastro and its rim is dipped (Soles 2008: 137; Smith 2002: 485).

P.29 (9350) - LMIIIA2, Pulled-Rim Bowl. Local vessel. The bowl is dipped and is completely covered (Soles 2008: 137; Smith 2002: 485).

P.30 (9353) - LMIIIA-IIIB, Pulled-Rim Bowl. Local vessel. The rim of bowl is dipped and has drops spilling down its exterior (Soles 2008: 137; Smith 2002: 485).

P.31 (9388) - LMIIIA-IIIB, Pulled-Rim Bowl. Local Vessel. It is dipped with splotches on the exterior (Soles 2008: 137; Smith 2002: 484).

P.32 (9383) - LMIIIA-IIIB, Pulled-Rim Bowl. Local Vessel. The entire body is dipped (Soles 2008: 137; Smith 2002: 484).

P.33 (9385) - LMIIIA-IIIB, Pulled-Rim Bowl. Local vessel. It is dipped. There are some splatters on the exterior of the bowl (Soles 2008: 137; Smith 2002: 484).
P.34 (10036)- LMII-IIIA1, Shallow Bowl with Handles. Local vessel. This vessel has a very early date relative to the other pottery in the cemetery. Smith states that the bowl’s deposit is unknown, but Soles identifies it as belonging to Tomb 2 and so it will be included here. It is decorated with a group of wavy lines, banded dots, nested triangles and parallel slashes (Soles 2008: 136; Smith 2002: 484).

Height: 0.085
Max. Diameter: N/A
Rim Diameter: 0.181
Base Diameter: 0.061
Handle Width: 0.012
Handle Depth: 0.013

P.35 (9395)- LMIIIA1, Amphoroid Krater. Imported from Knossos. This is one of the largest kraters found in the cemetery. It would have held 15,069 mL and would have been large enough to serve a large crowd. It is painted with simple foliate, antithetic foliate, concentric semicircles nested chevrons and arcs, and stemmed spirals (Smith 2002: 488; Soles 2008: 136).

Height: 0.369
Max. Diameter: 0.322
Rim Diameter: 0.246
Base Diameter: 0.113
Handle Width: 0.036
Handle Depth: 0.01

P.36 (9372)- LMIIIA1, Low-stemmed Kylix. Imported from Knossos. Soles identifies the object as an heirloom while Smith does not. It will be assumed that it is not. It is undecorated and has very high flung handles (Smith 2002: 488; Soles 2008: 136).

Height: 0.088
Max. Diameter: N/A
Rim Diameter: 0.098
Base Diameter: 0.052
Handle Width: Unspecified
Handle Depth: Unspecified
P.37 (9373)- LMIII A1, Low-stemmed Kylix. Like P.36 this vessel was imported from Knossos. Smith again identifies the kylix as an heirloom. Once again this will be assumed incorrect based on Smith’s chronology for the cemetery. It is undecorated and has high flung handles like P.36 (Smith 2002: 488; Soles 2008: 136)

Height: 0.085
Max. Diameter: N/A
Rim Diameter: 0.089
Base Diameter: 0.05
Handle Width: Unspecified
Handle Depth: Unspecified

P.38 (11122)- LM IIIA-IIIB, Narrow-necked Jug. Local vessel. Soles states that this jug was likely a part of a drinking service with krater P.35. It is undecorated (Smith 2002: 487; Soles 2008: 136)

Height: 0.215
Max. Diameter: 0.179
Rim Diameter: 0.051
Base Diameter: 0.087
Handle Width: Unspecified
Handle Depth: Unspecified

P.39 (11113)- LM IIIA-IIIB, Trefoil-mouthed Jug. Local vessel. Soles once again identifies this jug as a part of a larger drinking service. The upper portion of it is dipped (Smith 2002: 488; Soles 2008: 136)

Height: 0.205
Max. Diameter: 0.182
Rim Diameter: Broken
Base Diameter: 0.182
Handle Width: Unspecified
Handle Depth: Unspecified

P.40 (9389)- LM IIIA1, Collar-necked Jug. Local vessel. This is the largest jug found in the cemetery holding 7729 mL. It is noteworthy that is was found in the same tomb as the 2nd largest krater in the cemetery. It is painted with large papyrus flowers and thin rings circling the body below (Smith 2002: 488; Soles 2008: 136).

Height: 0.257
Max. Diameter: 0.255
Rim Diameter: 0.143
Base Diameter: 0.14
Handle Width: 0.036
Handle Depth: 0.009
P.41 (9393)- LMIIIA2, Piriform Jar with four handles. Imported from Palaikastro. Painted with simple foliate, waves lines and groups of parallel chevrons (Smith 2002: 486; Soles 2008: 136)

Burial Containers:

B.2 (9974 a and b)- No precise date is given for the larnax. It will be assumed that its date falls between LMIIIA1-IIIB. This is the largest larnax found in the cemetery. It has 21 drainage holes, 6 horizontal handles and a gabled lid. It is painted with decorations in vertical panels. The panels contain chevrons and wavy lines. (Soles 2008: 136; Smith et al. 2011: No page numbers).

Tomb 3 (Tomb Gamma)

Tomb 3 is a rather small chamber tomb, also carved into the soft limestone bed rock, located near the center of the cemetery. It may have had a small porch instead of a built dromos but it is now unclear. The chamber itself measures 0.95 m by 1m and is roughly circular in shape with a ceiling that rises to 0.75m above the floor level (Soles 2008: 138). The original excavators found a single burial which they identified as that of a child or infant. The body is no longer extant but teeth belonging to one person were found by later excavators (Soles 2008: 138). No pottery was found in
this tomb but a few metal objects were found within the pithos. No dates are provided for this tomb as there was no pottery found within (Smith 2002: 304).

Burial Containers:

B.3 - Pithos. No precise date is given to the pithos. Its date most likely falls somewhere within the cemetery’s period of use so it will be given a very general date of LMIIIA1- IIIB. Decorated with a single band of incised rope. Held in place by large schist slabs within the tomb chamber. (Smith 2002: 304; Soles 2008: 138).

Jewelry and Personal Ornamentation:

J.1 (CA 258) - Bronze Ring. Like the pithos, no precise date was given by Smith or Soles for this ring. It is made of a thin, rectangular strip of bronze. The ring is broken into 3 small pieces (Smith et al. 2011: 44; Soles 2008: 138).

J.2 (Pb 60a and b) - Two Lead Beads. These will also take the date of the tomb of LMIIIA1- IIIB. Made using sheets of lead which were

The ring is heavily fractured so the exact size is unknown. There are three pieces remaining with the largest one measuring 0.0015 in width, 0.004 in length and 0.02 in depth. The pieces weigh 0.4 grams in total.

Length: 0.005
Width: 0.005
Diameter of Hole: 0.008
hammered into a cylindrical shape (Smith et al. 2011: 43; Soles 2008: 138).

J.3 (S 403) - Carnelian Bead. This piece will also take the general dates of the cemetery of LMIIIA1-IIIB. (Smith et al. 2011: 41; Soles 2008: 138)

Tomb 4 (Tomb Delta)

Tomb 4 is another chamber tomb atop Limenaria hill. It is average in size with a dromos measuring 1.25 m long and 1.10 m wide (Soles 2002: 139). The chamber itself is a lopsided circle measuring 1.40 by 1.55 m. The chamber floor is at about the same level as the dromos so lacks the small step seen in some of the larger and more elaborate chamber tombs in the cemetery. The ceiling height varies within the chamber but at its lowest it is 1 m above floor level and at its highest it is 1.6 m above floor level (Soles 2002:139). A single burial within a chest larnax was reported but the body is no longer extant (Soles 2002: 139). According to Smith the pottery within this tomb gives it an approximate date of **LMIIIA2-IIIB** (Smith 2002: 304). The earlier pottery will be mentioned here.

Pottery:

P.42 (9381b)- LMIIIA2-IIIB, Flat-Walled Pyxis Lid. Local vessel. The lid is painted with concentric circles on its top. The lid was found with a pyxis as well, but the pyxis is of a later date and will be discussed in the LMIIIB
section (Smith 2002: 491; Soles 2008: 139).

- Height: 0.086
- Max. Diameter: N/A
- Rim Diameter: 0.112
- Base Diameter: 0.091
- Handle Width: 0.008
- Handle Depth: 0.007

P.44 (9370b) - LMIIIA2-IIIB, Flat-Walled Pyxis Lid. This is the lid to P.43 above and is also a Central Cretan import. It is painted with concentric wavy lines (Smith 2002: 490-491; Soles 2008: 139).

- Height: 0.026
- Max. Diameter: N/A
- Rim Diameter: 0.102
- Base Diameter: Unspecified
- Handle Width: N/A
- Handle Depth: N/A

P.45 (9347) - LMIIIA2-IIIB, Piriform Stirrup Jar. Imported from Palaikastro. It is painted with heavy decoration on the shoulder and thick lines wrapping around the body. The patterning on the shoulder includes a nest arc, zigzags and semicircles (Smith 2002: 491; Soles 2008: 139).

- Height: 0.175
- Max. Diameter: 0.151
- Rim Diameter: 0.029
- Base Diameter: 0.058
- Handle Width: 0.015
- Handle Depth: 0.009

P.46 (11084) - LMIIIA2-IIIB, Conical Cup. Local vessel. It is undecorated (Smith 2002: 490; Soles 2008: 139).

- Height: 0.054
- Max. Diameter: N/A
- Rim Diameter: 0.1
- Base Diameter: 0.043
- Handle Width: N/A
- Handle Depth: N/A
P.47 (9371)- LMIII A2-IIIB, Pulled-Rim Bowl. Local vessel. The rim of the bowl is dipped (Smith 2002: 489; Soles 2008: 139).

P.48 (9376)- LM III A2-IIIB, Cylinder-necked Jug. Local vessel. The jug is heavily decorated with rather messy painting. The designs include simple cross hatching and dots (Smith 2002: 490; Soles 2008: 139).

Burial Containers:

B.4 (SM 11341)- Chest Larnax. No precise date is given for the larnax. It will be assumed that its date falls between LM III A2-IIIB. The larnax has six drainage holes and six horizontal handles. It is missing its lid and is the only larnax in the cemetery for which this is the case. It has six horizontal panels which are formed by raised decoration around the body of the larnax. One of the panels shows two human figures while the others contain mostly geometric shapes (Soles 2008: 139; Smith et al. 2011: No page numbers).
Tomb 5 (Tomb E)

Tomb 5 is one of the smaller chamber tombs in the cemetery. Its dromos measures only 0.6 m in length and 0.7 m in width. The chamber is level with the dromos and lacks the step seen in other tombs. The chamber itself measures 1.40 by 1.60 m with a ceiling height of 0.65 m above the floor level (Soles 2008: 140). No burial was reported by the excavators but a large pithos was found which most likely contained a burial originally (Soles 2008: 140). Smith dates this tomb as possibly being from LMIIIA1- LMIIIA2 (Smith 2002: 304).

Pottery:

P.49 (11101a) - LMIIIA2 or LMIIIA, Handless Pyxis. Local vessel. Painted with zigzags and tapering slashes (Smith 2002: 494; Soles 2008: 139).

P.50 (11101b) - LMIIIA2 or LMIIIA, Flat-walled lid to pyxis P.49. Local vessel. Painted with wavy lines circling the outer edge and a circle of dots circling the inner area (Smith 2002: 493; Soles 2008: 139).

P.51 (11115) –LMIIIA2 or LMIIIA, Pulled-Rim Bowl. Local vessel. The rim of the bowl is dipped and there are some drips on the exterior (Smith 2002: 493; Soles 2008: 139).
P.52 (11117) - LMIIIA2 or LMIIIA, Trefoil-mouthed Jug. Local vessel. The upper portion of the jug is dipped (Smith 2002: 493; Soles 2008: 139).

Burial Containers:

B.5 (11093) - Pithos. No date is specified so it will be given the date of the tomb which is LMIIIA1-III A2. The pithos has two bands of rope decoration across its body (Soles 2008: 140; Smith et al. 2011: No page numbers).

Tomb 6 (Tomb Sigma Tau)

Tomb 6 is a medium sized chamber tomb located in between tombs 5 and 7. Its dromos is 1.95 m in length and 0.90 m in width. Its chamber is roughly circular and measures 1.40 by 1.60 m. The dromos and chamber floors are at the same level and so there is no step between the two (Soles 2008: 140). The ceiling of the tomb is 1.15 m high near the tomb entrance and 0.85 m high towards the back of the tomb. The tomb also has a small hole, 0.35 m wide, cut right above the floor in the south-west corner. The hole opens into the upper portion of the wall of Tomb 7. Soles states that the hole was cut accidentally (Soles 2008: 140). A single burial within a pithos was found towards the back wall. The tomb is dated to **LMIIIA2** (Smith 2002: 304).
Pottery:

P.53 (9349)- LMIIIA2, Piriform Stirrup Jar. It is imported from Central Crete. The jar is painted with a stemmed spiral, ladder slashes, simple foliate motifs, N-shaped zigzags, wavy lines, and tricurved arches. The shoulder contains most of the decoration but the body is also quite busy (Smith 2002: 497; Soles 2008: 141).

- Height: 0.15
- Max. Diameter: 0.108
- Rim Diameter: 0.023
- Base Diameter: 0.03
- Handle Width: 0.012
- Handle Depth: 0.008

P.54 (11085)- LMIIIA2, Conical Cup. Local vessel. It is undecorated (Smith 2002: 496; Soles 2008: 141).

- Height: 0.04
- Max. Diameter: N/A
- Rim Diameter: 0.109
- Base Diameter: 0.035
- Handle Width: N/A
- Handle Depth: N/A

P.55 (9384)- LMIIIA2, Pulled-Rim Bowl. Local vessel. The rim of the bowl is dipped with slip running down the sides of the exterior (Smith 2002: 496; Soles 2008: 141).

- Height: 0.1
- Max. Diameter: N/A
- Rim Diameter: 0.147
- Base Diameter: 0.05
- Handle Width: N/A
- Handle Depth: N/A

P.56 (9387)- LMIIIA2, Pulled-Rim Bowl. Local vessel. The rim of the bowl is dipped with few drops of slip on the exterior (Smith 2002: 496; Soles 2008: 141).

- Height: 0.124
- Max. Diameter: N/A
- Rim Diameter: 0.17
- Base Diameter: 0.056
- Handle Width: N/A
- Handle Depth: N/A
P.57 (9351)- LMIIIA2, Pulled-Rim Bowl. Local vessel. The rim of the bowl is dipped with slip running down the sides of the exterior. The profile of the bowl is lumpy and asymmetrical (Smith 2002: 496; Soles 2008: 141).

Height: 0.066
Max. Diameter: N/A
Rim Diameter: 0.115
Base Diameter: 0.044
Handle Width: N/A
Handle Depth: N/A

P.58 (11120)- LMIIIA2, Piriform Jar. Local vessel. The jar is dipped entirely (Smith 2002: 497; Soles 2008: 141).

Height: 0.167
Max. Diameter: 0.157
Rim Diameter: 0.114
Base Diameter: 0.067
Handle Width: Unspecified
Handle Depth: Unspecified

P.59 (9354)-LMIIIA2, Collar-necked Jug. It is imported from Palaikastro. The vessel is dipped entirely (Smith 2002: 497; Soles 2008: 141).

Height: 0.133
Max. Diameter: 0.116
Rim Diameter: 0.054
Base Diameter: 0.055
Handle Width: 0.011
Handle Depth: 0.01

P.60 (11098)- LMIIIA2, Miniature Jug. Local vessel. It is painted with concentric semicircles. The handle and spout are broken (Smith 2002: 498; Soles 2008: 141).

Height: 0.052
Max. Diameter: 0.053
Rim Diameter: Broken
Base Diameter: 0.019
Handle Width: Broken
Handle Depth: Broken

P.61 (9356)- LMIIIA2, Globular Spouted Jug or Alabastron. Local vessel. It is painted but lacks any motifs. The vessel is miniaturized and was found in the pithos along with the burial dots.

Height: 0.053
Max. Diameter: 0.061
Rim Diameter: 0.045
Base Diameter: 0.029
Handle Width: Broken
Handle Depth: Broken
(Smith 2002: 495; Soles 2008: 141).

Burial Containers:

B.6 (11085)- Pithos. No date is provided by either Smith or Soles but the tomb itself is dated to LMIIIA2, so it will be assumed that the pithos takes this date as well. It is decorated with eight raised rope bands. Three of them are horizontal and five of them are wavy (Soles 2008: 141; Smith et al. 2011: No page numbers).

Length: 1.03 m. It is one of the three largest pithoi in the cemetery.

Tomb 7 (Tomb Z):

Tomb 7 is one of the largest tombs in the cemetery with a dromos measuring 3.25m in length and 0.9 m in width. The chamber itself is oblong and measures 2.20 by 2.65 m. It has a small step measuring 0.20 m that drops from the dromos to the chamber floor. The ceiling is 1.10 m high. A single burial within a chest larnax was found (Soles 2002: 141). The small hole mentioned above in the Tomb 6 entry opens into Tomb 7 on the southern side just below the ceiling. Based on the pottery, the tomb has been given a date of **LMIIIA2** (Smith 2002: 304).
Pottery:

P.62 (9386)- LMIIIA, Pulled-Rim Bowl. Imported from Palaikastro. The bowl is dipped (Smith 2002: 504; Soles 2008: 141).

P.63 (11138)- LMIIIA2, Pulled-Rim Bowl. Local vessel. It is possibly dipped though Smith is unsure (Smith 2002: 504; Soles 2008: 141).

P.64 (9392)- LMIIIA2, Miniature Jug. Imported from Palaikastro. The jug is highly decorated with painted motifs. These motifs include ladder slashes, simple dots and concentric circles (Smith 2002: 505; Soles 2008: 141).

P.65 (9391)- LHIIIA2- IIIB, Miniature Jug. Imported from Mainland. The jug is painted with groups of horizontal lines around the body and u-shaped arcs along the shoulder (Smith 2002: 505; Soles 2008: 141).
P.66 (9374)- LMIIIA, Narrow-necked Jug.
Local vessel. The jug is undecorated (Smith 2002: 505; Soles 2008: 141).

P.67 (11140b)- LMIIIA2, Flat-walled Pyxis lid.
Local vessel. It is highly decorated with painted motifs of nested triangles, crosshatched triangles, wavy lines and simple dots (Smith 2002: 505; Soles 2008: 141).

P.68 (11140a)-
LMIIIA or IIIA1, Handless Pyxis. Imported from Palaikastro. Soles gives this pyxis an earlier date of LMIIIA1 and states that it is an heirloom both because of its early date and because it is one of the most highly decorated vessels in the cemetery. Smith makes no such argument and dates the pyxis to LMIIIA. Smith’s dating will be trusted here. It is painted with human figures, a quadruped, which Soles identifies as a griffin, and reed flowers. Soles also states that it has

Height: 0.317
Max. Diameter: 0.204
Rim Diameter: 0.086
Base Diameter: 0.073
Handle Width: 0.029
Handle Depth: 0.014
Height: 0.026
Max. Diameter: N/A
Rim Diameter: 0.212
Base Diameter: 0.209
Handle Width: N/A
Handle Depth: N/A
Height: 0.139
Max. Diameter: 0.213
Rim Diameter: 0.209
Base Diameter: 0.213
Handle Width: N/A
Handle Depth: N/A
depictions of horns of consecration, birds and the night sky on it. It was found with P.67 as its lid though P.67 has a later date (Smith 2002: 505; Soles 2008: 141; Smith et al. 2011: No page numbers).

P.69 (11141)
LMIIIA, Piriform Stirrup Jar. Local vessel. It is painted with ladder slashes, simple foliate, triangles and banded dots (Smith 2002: 506; Soles 2008: 141).

![P.69](image)

- Height: 0.069
- Max. Diameter: 0.056
- Rim Diameter: 0.017
- Base Diameter: 0.02
- Handle Width: Unspecified
- Handle Depth: Unspecified

P.70 (9380)- LMIIIA, Globular-Conical Thelastron. Local vessel. It is painted with stemmed spirals, concentric semicircles, ladder slashes and iris flowers (Smith 2002: 506; Soles 2008: 141).

![P.70](image)

- Height: 0.207
- Max. Diameter: 0.182
- Rim Diameter: 0.091
- Base Diameter: 0.083
- Handle Width: 0.026
- Handle Depth: 0.015
Burial Containers:

B.7 (11340)- Chest Larnax with Gabled lid. It is given no specific date but the overall date of the tomb is LMIIIA2 so that will be the assumed date of the larnax as well. It has 20 drainage holes and six handles in total with two on each long end and one on each short end. It is painted with wide bands and drip patterns. Soles also identifies molded reliefs on the gabled lid which he identifies as the horns and tail of a bull. These reliefs can be seen in the upper two images (Soles 2008: 142; Smith et al. 2011: No page numbers).

Tomb 8 (Tomb H):

Tomb 8 is a relatively small chamber tomb with a disproportionately large dromos. Its dromos measures 1.20 m in length and 1.10 m in width. The chamber itself is roughly circular and measures 1.10 by 1.55 m with a ceiling 1.10 m above the floor level (Soles 2008: 142). A single burial was found within a pithos and based on pottery the tomb dates to LMIIIA1 to LMIIIA2 (Soles 2002: 304).
Pottery:

P.71 (11124) - LMIIIA, Pulled-Rim Bowl.
Imported from Palaikastro. The rim of the vessel is dipped (Smith 2002: 494; Soles 2008: 142).

P.72 (11092) - LMIIIA, Globular Spouted Jar or Alabastron. Local vessel. It is undecorated (Smith 2002: 494; Soles 2008: 142).

P.73 (11080) - LMIIIA, Miniature Jar. Local vessel. It is undecorated (Smith 2002: 494; Soles 2008: 142).

P.74 (11096) - LMIIIA2, Miniature Jug. Local vessel. It is painted with simple foliate and parallel chevron motifs. The decoration is mostly centered on the shoulder of the jug (Smith 2002: 495; Soles 2008: 142).

P.75 (11118) - LMIIIA, Trefoil-mouthed Jug. Imported from Palaikastro. The rim and shoulder of the vessel are dipped with drops of slip on the exterior (Smith 2002: 495; Soles 2008: 142).
P.76 (11130a) - LMIIIA, Handless pyxis. Imported from Palaikastro. It is painted with simple foliate, zigzags and banded dots. Both the lid and the pyxis are shown in the illustration (Smith 2002: 495; Soles 2008: 142).

Height: 0.107
Max. Diameter: 0.181
Rim Diameter: 0.140
Base Diameter: 0.166
Handle Width: N/A
Handle Depth: N/A

P.77 (11130b) - LMIIIA, Flat Walled Pyxis Lid. Imported from Palaikastro. It is decorated with simple foliate, parallel slashes, and zigzags. It is associated with P.76 above. Both the lid and the pyxis are shown in the illustration (Smith 2002: 495; Soles 2008: 142).

Height: 0.039
Max. Diameter: N/A
Rim Diameter: 0.184
Base Diameter: 0.180
Handle Width: N/A
Handle Depth: N/A

P.78 (11099) - LMIIIA, Piriform Stirrup Jar. Local vessel. It is heavily decorated with painted motifs. These motifs include ladder slashes, zigzags, linear dots, nested arcs, and crosshatching (Smith 2002: 496; Soles 2008: 142).

Height: 0.123
Max. Diameter: 0.095
Rim Diameter: 0.026
Base Diameter: 0.041
Handle Width: 0.01
Handle Depth: 0.007
Burial Containers:

B.8 (11094)- Pithos. No specific date was given to the pithos so it will take the date of the tomb which is LMIIIA1-LMIIIA2. It is decorated with four raised rope bands. It is one of the larger pithoi in the cemetery (Soles 2008: 142; Smith et al. 2011: No page numbers).

Tomb 9 (Tomb Theta)

Tomb 9 is a small chamber tomb in which a single pithos burial was found. Its dromos is shallow measuring 0.90 m in length and 0.80 m in width. The chamber itself forms an elongated circle and measures 1.55 m by 1.95 m with a ceiling that is 1.20 m above floor level. Much of the chamber was destroyed by a bulldozer during excavations so only the back area of the chamber is preserved (Soles 2008: 143). Based on the pottery, the date of the tomb is LMIIIA1 to LMIIIA2 (Smith 2002: 304).

Pottery:

P.79 (11089)- LMIIIA, Pulled-Rim Bowl. Local vessel. The entirety of the bowl is dipped (Smith 2002: 501; Soles 2008: 143).
P.80 (09379)-
LMIII A1, Double-Bowl Composite Vessel. Local vessel. It is highly decorated with painted motifs of parallel slashes, antithetic foliate, alternating foliate, simple leaves and zigzags (Smith 2002: 501; Soles 2008: 143).

Height: 0.11
Max. Diameter: 0.163
Rim Diameter: 0.154
Base Diameter: 0.078
Handle Width: 0.03
Handle Depth: 0.015

P.81 (11088)-
LMIII A, Rounded Handleless Cup. Local vessel. The entirety of the cup is dipped (Smith 2002: 501; Soles 2008: 143).

Height: 0.057
Max. Diameter: N/A
Rim Diameter: 0.103
Base Diameter: 0.035
Handle Width: N/A
Handle Depth: N/A

P.82 (11081)-

Height: 0.066
Max. Diameter: 0.062
Rim Diameter: Unspecified
Base Diameter: 0.022
Handle Width: Unspecified
Handle Depth: Unspecified

P.83 (11129)-
LMIII A, Trefoil-Mouthed Jug. Local vessel. The upper half of the jug is dipped (Smith 2002: 502; Soles 2008: 143).

Height: 0.24
Max. Diameter: 0.192
Rim Diameter: Unspecified
Base Diameter: 0.036
Handle Width: Unspecified
Handle Depth: Unspecified

P.84 (09341)-

Height: 0.159
Max. Diameter: 0.125
Rim Diameter: 0.03
Base Diameter: 0.051
Handle Width: 0.016
Handle Depth: 0.009
P.85 (09396b)-
LMIIIA, Flat Walled Pyxis Lid. Imported from Palaikastro. The lid is painted with simple wavy lines, antithetic foliate and simple foliate (Smith 2002: 502; Soles 2008: 143).

Height: 0.033
Max. Diameter: N/A
Rim Diameter: 0.264
Base Diameter: 0.254
Handle Width: N/A
Handle Depth: N/A

P.86 (09369a)-
LMIIIA, Handless Pyxis. Imported from Palaikastro and associated with P.86 above. It is painted with an FM 18 flower, papyrus flower, birds, horns of consecration, human figures, double axe, and nested arcs. It is similar to P.68 in that it is imported from Palaikastro and is also one of the most heavily decorated vessels at Mochlos (Smith 2002: 503; Soles 2008: 143).

Height: 0.205
Max. Diameter: 0.278
Rim Diameter: 0.228
Base Diameter: 0.255
Handle Width: N/A
Handle Depth: N/A

Burial Containers:

B.9 (Unnumbered Pithos at SM)- This pithos could not be found at the Siteia Museum and so no information on its size is known. The picture on the right is the only evidence we have for its decoration. It appears that it had four handles (Soles 2008: 143).
Jewelry and Personal Ornamentation:

J.4 (10331a-c)- Between Two and Three Fragmentary Bronze Rings. These will take the date of the tomb which is LMIIIA1-LMIIIA2. These four pieces do not fit together. One is made from a strip of bronze that is rectangular in section while the other three are made from strips that are round in section (Soles et al. 2011: 44).

Diameter of Largest Fragment: 0.016
Combined Weight: 2 g

J.5 (10332a-c)- Bronze Bracelet. It will take the date of the tomb which is LMIIIA1-LMIIIA2. This bracelet was found within the burial pithos (Soles et al. 2011: 48).

Diameter: ca. 0.07
Thickness: 0.0025-0.0045
Weight: 8.2 g

J.6 (10332d)- Bronze Bead. It will take the date of the tomb which is LMIIIA1-LMIIIA2. It is a flattened spherical bead that was found within the pithos (Soles et al. 2011: 43).

Diameter: 0.011
Hole Diameter: 0.008
Weight: 2.3 g

Miscellaneous:

M.1 (6902)- Lentoid Seal Stone. It will take the date of the tomb which is LMIIIA1-LMIIIA2.

Diameter: 0.0164-0.01
Max. Thickness: 0.0079
Diameter of Hole: 0.0033
M.2 (9096)- Rectangular Prism Seal Stone. It will take the date of the tomb which is LMIIIA1-LMIIIA2.

Length: 0.0145
Width: 0.012
Thickness: 0.0051

Tomb 10

Tomb 10 is a medium sized chamber tomb that was the first to be excavated by the Greek-American team in 1993. Its dromos is quite long measuring 2.65 m in length and 1.0m wide. The chamber itself is an irregular circle that measures 1.10 by 1.30 m with a ceiling 1.0 m above the floor level. Two burials were found, a male and a female, both within a tub larnax at the back of the chamber (Soles 2008: 144). Based on the pottery the tomb was given a date of LMIIIA1-LMIIIA2 (Smith 2002: 304).

Pottery:

P.87 (INSTAPEC 0952)- LMIIIA, Pulled-Rim Bowl. Local vessel. The rim of the bowl is dipped (Smith 2002: 441; Soles 2008: 144).

Height: 0.105
Max. Diameter: N/A
Rim Diameter: 0.162
Base Diameter: 0.054
Handle Width: N/A
Handle Depth: N/A

P.88 (10027)- LMIIIA1, Pulled-Rim Bowl. Local vessel. The bowl is painted with parallel slashes, simple foliate and dots. It is highly unusual to see a painted pulled-rim bowl in the cemetery (Smith 2002: 441; Soles 2008: 144).

Height: 0.079
Max. Diameter: N/A
Rim Diameter: 0.138
Base Diameter: 0.045
Handle Width: N/A
Handle Depth: N/A
P.89 (09939)- LMIIIA1, Composite Vessel Double-Bowl. Local vessel. It is highly decorated with painted motifs of simple foliate, zigzags, slashes, arcs and a scale pattern. It is a very well-crafted vessel (Smith 2002: 441; Soles 2008: 144).

P.90 (09937)- LMIIIA, Miniature Jug. Local vessel. It is painted with ladder slashes and concentric semicircles (Smith 2002: 441; Soles 2008: 144).

P.91 (09936)-LMIIIA2, Miniature Jug. The vessel is imported from Palaikastro. It is painted with groups of wavy lines (Smith 2002: 442; Soles 2008: 144).

P.92 (09935)- LMIIIA, Miniature Jug. It is imported from Palaikastro. It is painted with ladder slashes and running spirals (Smith 2002: 442; Soles 2008: 144).

P.93 (INSTAPEC 0951)- LMIIIA, Miniature Jug. Local vessel. It is painted with nested zigzags, and simple foliate. The neck of the jug is no longer extant (Smith 2002: 442; Soles 2008: 144).
P.94 (11077) - LMIII A1, Narrow-necked Jug. It is possibly from the mainland but it is unclear. It is painted with parallel slashes, simple foliate, a papyrus flower, and wavy lines. It was found inside the larnax below along with the bodies (Smith 2002: 442; Soles 2008: 144).

Burial Containers:

B.10 (12033) - Tub Shaped Larnax. No date is assigned but the overall date of the tomb is LMIII A1-II A2. It had four handles and a single drainage hole at the bottom. It was elaborately decorated with painted motifs. These include vertical spirals. Also, just below the rim on each side, there are two figures with their hands on their hips. One appears to be wearing an animal head mask (Smith 2005: 145; Soles et al. 2011: Figure 5).
Jewelry and Personal Ornamentation:

J.7 (F 58, IIC.30 in Soles 2002)- A necklace made up of around 40 blue faience beads. 28 of the beads are intact and 10 almost intact. There are also about 50 small pieces of beads. The beads have a mold made relief of an ivy leaf of them (Soles et al. 2011: 40; Soles et al. 2011: Figure 18).

J.8 (S 178, IIC.40 in Soles)- Stone Bead. No specific date is given for the bead so it will take the general date of the tomb. It is grain-shaped and made of a dark green stone (Soles et al. 2011: 41).

J.9 (Au 2, IIC.49 in Soles)- Gold Bead. A flattened cylinder bead made using the Egyptian technique of adding a rosy purplish patination. The bead is probably the center piece of necklace J.7 above (Soles et al. 2011: 41).
J.10 (Au 1, IIC.63 in Soles)- Gold Ring. The ring is pieced together from three different pieces. The band of the ring is gold plated copper. The bezel is a gold plate (Soles et al. 2011: 46).

J.11 (CA 92, IIC.112 in Soles)- Bronze Mirror. This is a bronze mirror that is slightly convex with two rivet holes where the handle would have attached. It was used as a lid to M.3 (Soles et al. 2011: 53).

Tools:

T.1 (IIC.209)- Bone Spatula. This is a bone implement split into two pieced with a rounded end on one piece. It was probably cut from a rib (Soles et al. 2011: 62).

T.2 (IIC.110, CA 93)- Bronze Spindle Hook/Spinning Needle. It is circular in section (Soles et al. 2011: 52).

T.3 (IIC.82, CA 193)- Bronze Pin or Needle. Five non-joining fragments of bronze wire (Soles et al. 2011: 47).
Miscellaneous:

M.3 (CA 87, IIC.111)- Bronze Bowl. The bowl was used as a jewelry box for the tomb and had J.11 as its lid (Soles et al. 2011: 53).

Diameter: 0.146
Height: 0.067
Thickness at Rim: 0.0042
Weight: 255.6 g

Tomb 11

Tomb 11 was a relatively isolated chamber tomb in the Limenaria cemetery. Its dromos was filled in with rubble and stones and also contained fragments of a burial pithos which belonged to a separate burial (See Tomb 25). The dromos measures 1.85 m long and 0.80-0.90 m wide. It is highly unusual as it slopes upwards to the chamber rather than downwards as with all the other dromoi seen in the cemetery (Soles 2008: 149). The chamber itself was cut into the bedrock and measured 1.25 by 1.40 m. The ceiling was preserved only to a height of 0.85 m. Two inhumed skeletons were found in the tomb. It is dated to **LMIIIA2-LMIIIB** (Soles 2008: 149; Smith 2002: 304).

Pottery:

P.95 (INSTAPEC 1000)- LMIIIA2-IIIB, Small Amphora. It is a local vessel and was found inside the larnax. It is painted with groups of wavy lines and ladder slashes (Soles 2008: 149; Smith 2002: 443).

Height: 0.178
Max. Diameter: 0.172
Rim Diameter: Broken
Base Diameter: 0.109
Handle Width: 0.024
Handle Depth: 0.013
P.96 (09923) -
LMIIIA2-IIIB, Straight-Sided Askos. It is imported from Palaikastro and is undecorated (Soles 2008: 149; Smith 2002: 443).

P.97 (10026) - LMIIIA2-IIIB, Pulled-Rim Bowl. Local vessel. It is dipped (Soles 2008: 149; Smith 2002: 443).

P.98 (INSTAPEC 0988) - LMIIIA2-IIIB, Shallow Bowl. Local vessel. It is undecorated and has a single handle. Only the handle is extant (Soles 2008: 149; Smith 2002: 443).

P.99 (09925) - LMIIIA, Miniature Jug. Local vessel. It is painted with an alternating arc motif (Soles 2008: 149; Smith 2002: 444).

P.100 (INSTAPEC 0991) - LMIIIA, Narrow-Necked Jug. Local vessel. It is undecorated (Soles 2008: 149; Smith 2002: 444).
P.101 (10028) - LMIIIA2-IIIB, Handless Pyxis. It is imported from Palaikastro. It is undecorated (Soles 2008: 149; Smith 2002: 444).

| Height: 0.117 | Max. Diameter: 0.11 |
| Rim Diameter: 0.07 |
| Base Diameter: 0.054 |
| Handle Width: N/A |
| Handle Depth: N/A |

P.102 (INSTAPEC 1014) - LMIII A2, Piriform Stirrup Jar. It is imported from Palaikastro. It is painted with running spirals, simple foliate motifs and crosshatched triangles (Soles 2008: 149; Smith 2002: 445).

| Height: 0.112 | Max. Diameter: 0.09 |
| Rim Diameter: |
| Unspecified |
| Base Diameter: 0.032 |
| Handle Width: 0.009 |
| Handle Depth: 0.007 |

Burial Containers:

B.11 (IIC.6, C288) - Tub-Shaped Larnax. It held two burials and had four handles. It is very minimally decorated (Soles 2008: 148; Soles et al. 2011: Figure 5).

| Length: 1.06 m |

Jewelry and Personal Ornamentation:

J.12 (IIC.92, CA 89) - Copper Alloy Bracelet. The bracelet is nearly intact and is formed with a bronze rod (Soles et al. 48).

| Maximum Diameter: 0.075 |
| Width: 0.254 |
| Maximum Thickness: 0.0043 |
| Weight: 14.3 g |
J.13 (IIC.64, CA 91)- Copper Alloy Ring. The ring is intact and is form from a narrow bronze strip (Soles et al. 2011: 46).

J.14 (IIC.31, F 10)- Necklace with 8 Faience Beads. Six of them are spherical and grey, one is ovoid and yellow and the last one is scallop shaped and also yellow (Soles et al. 2011: 40).

J.15 (IIC.83, F 9)- Faience Pin Head. It is spherical and attached to a thin bronze rod (Soles et al. 2011: 47).

Tomb 12

Tomb 12 is a small chamber tomb with a vestigial dromos rather than a true one. The small dromos measure 0.5 m by 1 m and has a small step leading into the chamber. The chamber is oblong and measures 1.10 by 1.85 m. The tomb was heavily damaged and so the ceiling height is unknown. Because of this damage, no skeletons or burial containers were found within the tomb. It is dated to LMIIIA2 and possibly into LMIIIB (Soles 2008: 151; Smith 2002: 304).
Pottery:

P.103 (INSTAPEC 1033)- LMIII A2-II B, Small Amphora. It is imported from Palaikastro. The amphora is painted with stemmed spirals, groups of arcs and parallel slashes (Soles 2008: 150; Smith 2002: 445).

P.104 (INSTAPEC 1036)- LMIII A, Pulled-Rim Bowl. It is imported from Palaikastro and is dipped. The exterior has patchy clumps of slip (Soles 2008: 150; Smith 2002: 446).

P.105 (INSTAPEC 1034)- LMIII A2-II B, Pulled-Rim Bowl. It is a local vessel and is dipped (Soles 2008: 150; Smith 2002: 446).

P.106 (INSTAPEC 1035)- LMIII A2-II B, Rounded Handless Cup. Local vessel. It is dipped entirely (Soles 2008: 150; Smith 2002: 446).

P.107 (INSTAPEC 1037)- LMIII A, Miniature Jug. Local vessel. It is painted with complex motifs. These motifs include FM 18 flowers and circular dots (Soles 2008: 150; Smith 2002: 446).
Trefoil-Mouthed Jug.
Local vessel. It is dipped. The outside is irregularly covered (Soles 2008: 150; Smith 2002: 447).

Tomb 13:

Tomb 13 is a large chamber tomb that Soles states is one of the most well-designed tombs in the cemetery. It has a large dromos that is 3.65 m long and between 1.25 and 1.40 m wide. It is the only tomb was a real stomion. It has a built threshold and two door jams cut from the bedrock. The dromos was filled in with rocks while the stomion has its own carefully built rubble wall in front of it. Far more care was put into this tomb than any of the others at Limenaria. The chamber itself measures 1.0 m by 1.60 m and has a ceiling that is 1.10 m above the floor level. There were at least five individuals buried in the tomb. This is the largest and nicest tomb in the cemetery and it has far more burial goods than other tombs. It is dated to LMIIIA2-IIIB (Soles 2008: 157; Smith 2002: 304).

Pottery:

Small Amphora. Local vessel. It is painted with ladder slashes and group wavy lined (Soles 2008: 151; Smith 2002: 447).
P.110 (INSTAPEC 1117)- LMIIIA2-IIIB, Small Amphora. It is from Central Crete and painted with simple wavy lines and simple dots (Soles 2008: 151; Smith 2002: 447).

Height: 0.162
Max. Diameter: 0.146
Rim Diameter: Broken
Base Diameter: 0.086
Handle Width: 0.015
Handle Depth: 0.013

P.111 (INSTAPEC 1071)- LMIIIA2-IIIB, Pulled-Rim Bowl. Local vessel. It is dipped (Soles 2008: 151; Smith 2002: 447).

Height: 0.099
Max. Diameter: N/A
Rim Diameter: 0.144
Base Diameter: 0.041
Handle Width: N/A
Handle Depth: N/A

P.112 (INSTAPEC 3141)- LMIIIA2-IIIB, Pulled-Rim Bowl. It is imported from Palaikastro and dipped. It is very heavily broken (Soles 2008: 151; Smith 2002: 448).

Height: Broken
Max. Diameter: N/A
Rim Diameter: Broken
Base Diameter: 0.055
Handle Width: N/A
Handle Depth: N/A

P.113 (INSTAPEC 1075)- LMIIIA2-IIIB, Pulled-Rim Bowl. Local vessel. It is dipped with intermittent splotches on the exterior (Soles 2008: 151; Smith 2002: 448).

Height: 0.097
Max. Diameter: N/A
Rim Diameter: 0.153
Base Diameter: 0.054
Handle Width: N/A
Handle Depth: N/A

P.114 (INSTAPEC 1069)- LMIIIA2-IIIB, Pulled-Rim Bowl. Local vessel. It is dipped (Soles 2008: 151; Smith 2002: 448).

Height: 0.095
Max. Diameter: N/A
Rim Diameter: 0.151
Base Diameter: 0.050
Handle Width: N/A
Handle Depth: N/A
P.115 (INSTAPEC 2665) - LMIIIA2-IIIB, Conical Cup. Local vessel. It is undecorated and broken (Soles 2008: 151; Smith 2002: 448).

P.116 (INSTAPEC 1079) - LMIIIA2-IIIB, Conical Cup. Local vessel. It is undecorated (Soles 2008: 151; Smith 2002: 449).

P.117 (INSTAPEC 1080) - LMIIIA2-IIIB, Conical Cup. Local vessel. It is undecorated and very similar in size to the two conical cups, P.116 and P.117, above (Soles 2008: 151; Smith 2002: 449).

P.118 (INSTAPEC 1124) - LMIIIA2-IIIB, Conical Cup. Local vessel. It is undecorated and broken (Soles 2008: 151; Smith 2002: 449).

P.119 (INSTAPEC 2664) - LMIIIA2-IIIB, Conical Cup. Local vessel. It is undecorated (Soles 2008: 151; Smith 2002: 449).

P.120 (INSTAPEC 2666) - LMIIIA2-IIIB, Conical Cup. Local vessel. It is undecorated and broken (Soles 2008: 151; Smith 2002: 450).
P.121 (INSTAPEC 2663) - LMIIIA2-IIB, Conical Cup. Local vessel. It is undecorated and broken (Soles 2008: 151; Smith 2002: 450).

P.122 (INSTAPEC 1068) - LMIIIA2-IIB, Conical Cup. Local vessel. It is undecorated (Soles 2008: 151; Smith 2002: 450).

P.123 (INSTAPEC 1067) - LMIIIA2-IIB, Conical Cup. Local vessel. It is undecorated (Soles 2008: 151; Smith 2002: 450).

P.124 (INSTAPEC 1119) - LMIIIA2, Deep Cup. Local vessel. It is undecorated and broken (Soles 2008: 151; Smith 2002: 451).

P.125 (INSTAPEC 2662) - LMIIIA2-IIB, Piriform Jar. Local vessel. It is dipped (Soles 2008: 151; Smith 2002: 451).

P.126 (INSTAPEC 1050) - LMIIIA2-IIB, Collar-Necked Jug. Local vessel. It is dipped (Soles 2008: 151; Smith 2002: 451).
P.127 (INSTAPEC 1120)- LMIIIA2-IIIB, Miscellaneous Jug. Local vessel. The decorating technique of this jug is unknown. The rim is broken (Soles 2008: 151; Smith 2002: 451).

Dimensions:
- Height: 0.226
- Max. Diameter: 0.197
- Rim Diameter: Broken
- Base Diameter: 0.104
- Handle Width: 0.023
- Handle Depth: 0.011

P.128 (INSTAPEC 2661)- LMIIIA2-IIIB, Trefoil-Mouthed Jug. Local vessel. The upper portion of the jug is dipped (Soles 2008: 151; Smith 2002: 452).

Dimensions:
- Height: 0.215
- Max. Diameter: 0.165
- Rim Diameter: N/A
- Base Diameter: 0.071
- Handle Width: 0.026
- Handle Depth: 0.014

P.129 (INSTAPEC 1058)- LMIIIA, Miscellaneous Vessel. Local vessel. It is heavily broken but its body is painted with nested triangles and parallel slashes (Soles 2008: 151; Smith 2002: 452).

Dimensions:
- Height: 0.142
- Max. Diameter: 0.156
- Rim Diameter: Broken
- Base Diameter: 0.074
- Handle Width: N/A
- Handle Depth: N/A

P.130 (9938)- LMIIIA2, Funnel Rhyton. Probably imported from Palaikastro. It is elaborately decorated with an octopus, hatched leaves, chevrons, semicircles and linear dots (Soles 2008: 151; Smith 2002: 453).

Dimensions:
- Height: 0.123
- Max. Diameter: 0.128
- Rim Diameter: 0.079
- Base Diameter: 0.019
- Handle Width: Unspecified
- Handle Depth: Unspecified
P.131 (INSTAPEC 1116) – LMIIIA2, Funnel Rhyton. It is probably imported from Palaikastro and seems to have been purposefully broken before being placed in the tomb. It is nearly identical to P.131 above and is also painted with an octopus and hatched leaves. It also has parallel slashes, fringed slashes and arcs (Soles 2008: 151; Smith 2002: 453).

Height: 0.121
Max. Diameter: 0.130
Rim Diameter: 0.080
Base Diameter: 0.020
Handle Width: 0.018
Handle Depth: 0.008

P.132 (INSTAPEC 2659) - LMIIIA2-IIIB, Globular Stirrup Jar. Local vessel. It is painted with thick bands around the body and spout (Soles 2008: 151; Smith 2002: 453).

Height: 0.105
Max. Diameter: 0.103
Rim Diameter: Broken
Base Diameter: 0.035
Handle Width: 0.011
Handle Depth: 0.007

P.133 (INSTAPEC 2658) - LHIIIA2, Piriform Stirrup Jar. It is imported from the Mainland and is painted with a papyrus flower and simple wavy lines. It is very heavily broken (Soles 2008: 151; Smith 2002: 453).

Height: Broken
Max. Diameter: Broken
Rim Diameter: Broken
Base Diameter: Broken
Handle Width: 0.013
Handle Depth: Broken

P.134 (INSTAPEC 1118) - LMIIIA2, Piriform Stirrup Jar. It is imported from Palaikastro and is painted though the motifs used are unknown (Soles 2008: 151; Smith 2002: 454).

Height: 0.139
Max. Diameter: 0.121
Rim Diameter: Broken
Base Diameter: 0.043
Handle Width: 0.012
Handle Depth: 0.008
P.135 (INSTAPEC 1076) - LMIII A, Globular Thelastron. Local vessel. It is painted with nested triangle and tapering slashes (Soles 2008: 151; Smith 2002: 457).

| Height: 0.081 |
| Max. Diameter: 0.078 |
| Rim Diameter: 0.049 |
| Base Diameter: 0.033 |
| Handle Width: 0.015 |
| Handle Depth: 0.008 |

| Height: 0.154 |
| Max. Diameter: 0.127 |
| Rim Diameter: 0.088 |
| Base Diameter: 0.056 |
| Handle Width: 0.02 |
| Handle Depth: 0.011 |

Burial Containers:

B.12 (IIC.7, C313)- Tub Shaped Larnax. No date is specified for the larnax so it will take the date of the tomb which is LMIII A2-IIIB. It contained three bodies and was one of the largest in the cemetery. It is painted with stacked chevrons within horizontal panels (Soles 2008: 152; Soles et al. 2011: Figure 6).

Length: 1.26m
B.13 (INSTAPEC 1074)- LMIIIA2, Handless Pyxis. It was imported from Palaikastro and was probably made to be used in life and was later repurposed to hold the burial of a young adult. It is painted with a palm flower, ladder slashes, border semicircles and a checkerboard quadrangle (Soles 2008: 153; Smith 2002: 452).

Jewelry and Personal Ornamentation:

J.16 (IIC.210 B 32)- Bone Etui. No specific date is assigned so it will take the date of the tomb. Only four non-joining fragments remain. It is a bone case that is diamond shaped in section. It was found with the remains of a female within the pyxis (Soles et al. 2011: 63).

J.17 (IIC.65 CA 100)- Copper Alloy Ring. No specific date is assigned so it will take the date of the tomb. It is formed from a thin bronze rod that is circular in

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Height</th>
<th>Max. Diameter</th>
<th>Rim Diameter</th>
<th>Base Diameter</th>
<th>Handle Width</th>
<th>Handle Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.13</td>
<td>0.212</td>
<td>0.274</td>
<td>0.224</td>
<td>0.238</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>J.16</td>
<td>Length (of largest piece): 0.01 Width (of largest piece): 0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J.17</td>
<td>Diameter: 0.02-0.021 Weight: 1.2 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
section (Soles et al. 2011: 46).

J.18 (IIC.66 CA 101)-Copper Alloy Ring. No specific date is assigned so it will take the date of the tomb. This is a spiral ring that was mended from three fragments. It is also formed from a thin bronze rod that is circular in section (Soles et al. 2011: 46).

J.19 (IIC.53 CA 222)-Bronze Bead. No specific date is assigned so it will take the date of the tomb. It is a small spherical bead. It could also possibly be a pin head (Soles et al. 2011: 43).

J.20 (IIC.32 F 19)-Two Faience Beads. No specific date is assigned so it will take the date of the tomb. One is spherical and grey and the other is disc shaped and white (Soles et al. 2011: 42).

J.21 (IIC.41 S 190)-Six Stone Beads. No specific date is assigned so it will take the date of the tomb. Two of the beads are carnelian, one is an irregularly shaped carnelian bead, one is an ovoid carnelian
bead, one is a spherical quartz bead, and the final one is disc shaped quartz bead (Soles et al. 2011: 42).

Tools:

T.4 (IIC.94 CA 99) - Bronze Knife. No specific date is assigned so it will take the date of the tomb. It was broken into four pieces but is nearly complete (Soles et al. 2011: 49).

- Diameter (of disc shaped quartz bead): 0.018
- Length: 0.146
- Maximum Width: 0.033
- Thickness: 0.002-0.0052
- Weight: 31.5 g

T.5 (IIC.95 CA 129) - Bronze Knife. No specific date is assigned so it will take the date of the tomb. This knife was also broken into four pieces but is nearly complete (Soles et al. 2011: 50).

- Length: 0.20
- Maximum Width: 0.02
- Thickness: 0.0005-0.0027
- Weight: 33.4 g

Miscellaneous:

M.4 (9947) - Seal Stone. No specific date is assigned so it will take the date of the tomb. It shows a lion facing left with another animal in its mouth. There is a column at center (Soles et al. 2011: 64).

- Diameter: 0.023
- Maximum Thickness: 0.008
M.5 (9945)- Seal Stone. No specific date is assigned so it will take the date of the tomb. It shows a winged sphinx in profile. It was found within the tub larnax (Soles et al. 2011: 64).

Diameter: 0.018

Maximum Thickness: 0.006

Tomb 14:

Tomb 14 contained no pottery and is relatively small. Its dromos is rather small and can be considered vestigial. It measures 0.6 m by 0.65 m. The chamber itself measure 1.30 by 1.40 m and has a ceiling that is 0.55 m above the floor level. The only find was a large pithos. No skeletal remains were found. Because of the lack of pottery, **no date** is given for this tomb (Soles 2008: 157; Smith 2002).

Burial Containers:

B.14 (INSTAPEC 1104)- Burial Pithos. It has four handles and it undecorated (Soles et al. 2011: 31).

Height: 0.644-0.660

Maximum Diameter: 0.562

Rim Diameter: 0.334

Base Diameter: 0.208
Tomb 15:

Tomb 15 is the largest tomb in the cemetery. Its dromos is 3.80 m long and 0.80-1.0 m wide and has two shallow stone steps that lead into the chamber. The chamber measures 2.05 by 2.35 m but its ceiling collapsed before measurements for height could be made. A rather unusual tunnel in the back of the tomb was found that lead into Tomb 16. Because the two tombs are at different levels, the tunnel opens near the ceiling of Tomb 16 while it opens onto the floor of Tomb 15. Soles states that it is possible that there was some relationship between the two single individuals in each of these tombs (Soles 2008: 158). The tomb is dated to LMIIIA1 to LMIIIA2 (Smith 2002: 304). Soles also suggests that the individual buried in this tomb was a telestas, or a senior officer of some sort using this Mycenaean form as a symbolic tie to wealth and authority. The high quantity of grave goods, the ritually broken objects and the old age of the interred individual, mid 40s to mid 50s, all support this identification (Tsipopoulou 2005: 309; Vavouranakis 2007: 154).

Pottery:

P.137 (INSTAPEC 1132)- LMIIIA1, Pulled-Rim Bowl. Local vessel.
It is dipped (Soles 2008: 160; Smith 2002: 458).

- Height: 0.085
- Max. Diameter: N/A
- Rim Diameter: 0.13
- Base Diameter: 0.046
- Handle Width: N/A
- Handle Depth: N/A

P.138 (INSTAPEC 1135)- LMIIIA1, Pulled Rim Bowl. Local vessel.
It is dipped (Soles 2008: 160; Smith 2002: 458).

- Height: 0.073
- Max. Diameter: N/A
- Rim Diameter: 0.116
- Base Diameter: 0.041
- Handle Width: N/A
- Handle Depth: N/A
P.139 (INSTAPEC 1166)- LMIIIA, Pulled-Rim Bowl. It is imported from Palaikastro. It is dipped (Soles 2008: 160; Smith 2002: 458).

P.140 (INSTAPEC 1149)- LMIIIA1, Pulled-Rim Bowl. It is imported from Palaikastro and dipped (Soles 2008: 160; Smith 2002: 459).

P.141 (INSTAPEC 1143)- LMIIIA, Conical Cup. Local vessel. It is dipped entirely (Soles 2008: 160; Smith 2002: 459).

P.142 (INSTAPEC 1153)- LMIIIA, Conical Cup. Local vessel. It is undecorated (Soles 2008: 160; Smith 2002: 459).

P.143 (INSTAPEC 1151)- LMIIIA, Conical Cup. Local vessel. It is undecorated (Soles 2008: 160; Smith 2002: 459).
P.144 (INSTAPEC 1150) - LMIIIA, Conical Cup. Local vessel. It is undecorated (Soles 2008: 160; Smith 2002: 460).

P.145 (INSTAPEC 1144) - LMIIIA, Conical Cup. Local vessel. It is dipped entirely (Soles 2008: 160; Smith 2002: 460).

P.146 (INSTAPEC 1133) - LMIIIA, Conical Cup. Local vessel. It is dipped entirely (Soles 2008: 160; Smith 2002: 460).

P.147 (INSTAPEC 1148) - LMIIIA, Conical Cup. Local vessel. It is dipped entirely (Soles 2008: 160; Smith 2002: 460).

P.148 (INSTAPEC 1136) - LMIIIA, Conical Cup. Local vessel. It is dipped entirely (Soles 2008: 160; Smith 2002: 461).

P.149 (INSTAPEC 1145) - LMIIIA, Conical Cup. Local vessel. It is undecorated (Soles 2008: 160; Smith 2002: 461).
P.150 (INSTAPEC 1146) - LMIIIA, Conical Cup. Local vessel. It is undecorated and its base is broken (Soles 2008: 160; Smith 2002: 461).

Height: 0.047
Max. Diameter: N/A
Rim Diameter: 0.113
Base Diameter: Broken
Handle Width: N/A
Handle Depth: N/A

P.151 (INSTAPEC 1147) - LMIIIA, Conical Cup. Local vessel. It is undecorated (Soles 2008: 160; Smith 2002: 461).

Height: 0.048
Max. Diameter: N/A
Rim Diameter: 0.089
Base Diameter: 0.036
Handle Width: N/A
Handle Depth: N/A

P.152 (INSTAPEC 1142) - LMIIIA, Rounded Handless Cup. Local vessel. It is dipped entirely (Soles 2008: 160; Smith 2002: 462).

Height: 0.058
Max. Diameter: N/A
Rim Diameter: 0.10
Base Diameter: 0.039
Handle Width: N/A
Handle Depth: N/A

P.153 (INSTAPEC 1155) - LMIIIA1, Collar-Necked Jug. It is imported from Central Crete and is painted with a papyrus flower, iris flower, solid semicircles and parallel slashes (Soles 2008: 160; Smith 2002: 462).

Height: 0.179
Max. Diameter: 0.176
Rim Diameter: 0.122
Base Diameter: 0.085
Handle Width: Unspecified
Handle Depth: Unspecified

P.154 (INSTAPEC 1137) - LMIIIA, Collar-Necked Jug. It is imported from Central Crete and was ritually broken. It is painted with an octopus, parallel slashes and zigzags (Soles 2008: 160; Smith 2002: 462).

Height: 0.199
Max. Diameter: 0.167
Rim Diameter: 0.109
Base Diameter: 0.055
Handle Width: Broken
Handle Depth: Broken
P.155 (INSTAPEC 1165)- LMIII A, Collar-Necked Jug. It is imported from Palaikastro and is dipped with irregular coating on the exterior (Soles 2008: 160; Smith 2002: 462).

P.157 (INSTAPEC 1156)- LMIII A, Amphoroid Krater. It is imported from Palaikastro and painted with thick bands around its body (Soles 2008: 160; Smith 2002: 463).

P.158 (INSTAPEC 1152) – LMIII A, Low-Stemmed Kylix. It is imported from Central Crete and is undecorated (Soles 2008: 160; Smith 2002: 463).

P.160 (INSTAPEC 1141) - LMIIIA, Conical Rhyton. Local vessel. It is painted with parallel chevrons, simple dots, zigzags, and groups of wavy lines (Soles 2008: 160; Smith 2002: 464).

P.161 (INSTAPEC 1140) - LMIIIA, Conical Rhyton. Local vessel. It is undecorated (Soles 2008: 160; Smith 2002: 464).

P.162 (INSTAPEC 1138) - LMIIIA2, Funnel Rhyton. Local vessel. It is painted with iris flowers, banded dots, ladder slashes and mirrored foliate undecorated (Soles 2008: 160; Smith 2002: 464).

P.163 (INSTAPEC 1134) - LMIIIA2, Funnel Rhyton. Local vessel. It is painted with papyrus flowers, ladder slashes and solid triangles. It is very similar in size and shape to P.163 (Soles 2008: 160; Smith 2002: 464).
Burial Containers:

B.15 (IIC.8, C314)

Chest Larnax. It has four horizontal handles and has a shallow triglyph relief. It is one of the largest in the cemetery and is the only larnax not made locally. It is imported from Gournia (Soles et al. 2011: 29).

Length: 1.2
Width: 0.46-0.475
Height: 0.54
Depth: 0.52

Tools:

T.6 (IIC.103, CA 114)

Bronze Chisel. Only 4 chisels were found within the cemetery. Only one piece is still extant (Soles et al. 2011: 51).

Length: 0.038
Maximum Width: 0.014
Maximum Thickness: 0.0027
Weight: 5.9 g

Weapons:

W.1 (IIC.96, CA 110)

Bronze Dagger. It was broken into nine fragments but was mended and is now nearly complete. It was ritually broken before being placed in the tomb. The act of “killing” a weapon before placing it in a tomb is common in Mycenaean burials. This is the only weapon found in the entire Limenaria cemetery (Soles et al. 2011: 50).

Length: 0.15
Maximum Width: 0.033
Thickness: 0.0035-0.0007
Weight: 18.7 g
Tomb 16:

Tomb 16 is also relatively large and is connected to Tomb 15 by the small tunnel described above. It has a dromos that measures 4.0 m long and 0.65 m wide which was filled in completely with rubble. The chamber measures 1.65 m by 1.90 m and is roughly circular. It contained a single burial and has been potentially dated to LMIIIA1 - LMIIIA2 (Soles 2008: 162; Smith 2002: 304).

Pottery:

P.164 (INSTAPEC 1198) - LMIIIA, Pulled-Rim Bowl. It is imported from Palaikastro and is dipped (Soles 2008: 161; Smith 2002: 465).

P.165 (INSTAPEC 1200) - LMIIIA, Miniature Jug. Local vessel. It is painted with parallel slashes and groups of wavy lines (Soles 2008: 161; Smith 2002: 465).

P.166 (INSTAPEC 1201) - LMIIIA, Miniature Jug. Local vessel. It is very similar to P.166 and is painted with groups of parallel lines and parallel slashes (Soles 2008: 161; Smith 2002: 465).

Height: 0.204
Max. Diameter: 0.155
Rim Diameter: 0.062
Base Diameter: 0.071
Handle Width: N/A
Handle Depth: N/A

P.168 (INSTAPEC 1202)- LMIIIA, Side-Handled Pyxis. Local vessel. It painted with groups of wavy lines in white paint (Soles 2008: 161; Smith 2002: 466).

Height: 0.059
Max. Diameter: 0.075
Rim Diameter: 0.057
Base Diameter: 0.047
Handle Width: 0.009
Handle Depth: 0.005

Burial Containers:

B.16 (IIC.16, INSTAPEC 1197)- Burial Pithos. It was broken into 53 pieces but is mostly complete. It had a single burial. It has four handles and raised rope patterns as decoration (Soles et al. 2011: 32).

Height: 0.95
Maximum Diameter: 0.65
Rim Diameter: 0.418
Base Diameter: 0.31

Jewelry and Personal Ornamentation:

J.22 (IIC.67, CA 124)- Bronze Ring. It is a spiral ring that is formed from a think rod that is circular in section (Soles et al. 2011: 46).

Diameter: 0.018-0.020
Maximum Thickness: 0.0017
Weight: 1.3 g
J.23 (IIC.68, CA 125)- Bronze Ring. Only two thirds of the ring are extant. It is rectangular in section (Soles et al. 2011: 46).

J.24 (IIC.69, CA 126)- Bronze Ring. Complete ring that was broken into four fragments. It is rectangular in section (Soles et al. 2011: 46).

J.25 (IIC.33, F 20)- 92+ Faience Beads from Multiple Necklaces. The 92+ beads are associated with necklaces 4, 6 and 7. Necklace number 4 has 34+ beads. They are made up of heart shaped glass with lily reliefs on them. Necklaces number 5 and 6 are made up of 48 beads that are spherical and green. There is also a papyrus shaped bead associated with necklace 7, seven faience beads from necklace 6 and a single almond shaped faience bead from necklace 6 (Soles et al. 2011: 41).
J.26 (IIIC.50, Au 3)-
Four Gold Beads.
These beads are associated with necklace number 6. The largest one is almond shaped. The three others are grain shaped (Soles et al. 2011: 42).

Length (of almond bead): 0.013
Length (of three grain beads): 0.007-0.008
Total Weight: 0.45 g

J.27 (IIIC.42, S 194)-
Stone Necklace of 17+ beads. All 17+ beads are associated with necklace 7. 13 of them are carnelian beads, two of which are spherical. There is also one dome-shaped bead with a flat base, a rectangular bead and two lenticular beads (Soles et al. 2011: 42).

Diameter (of two spherical beads): 0.006; 0.008
Diameter (of domed bead): 0.007-0.008
Length (of rectangular bead): 0.0055
Length (of two lenticular beads): 0.0062

Miscellaneous:

M.6 (IIIC.219, S 511)-
Fossil Gastropod.
No Image Available
Length: 0.021
Weight: 0.01 g

Tomb 17:

Tomb 17 is one of the few burials in the Limenaria cemetery that is not a chamber tomb. It is instead an elongated pit that measures 1.25 m in width, 1.70 m in length and 1.25 m in depth. It contained two burials and is dated to **LMIIIA2 to LMIIIB** (Soles 2008: 164; Smith 2002: 304).
Pottery:

P.169 (INSTAPEC 1420) - LMIII A2-IIIB, Rounded Handless Cup. Local vessel. It is dipped entirely (Soles 2008: 164; Smith 2002: 466).

Height: 0.051
Max. Diameter: N/A
Rim Diameter: 0.095
Base Diameter: 0.032
Handle Width: N/A
Handle Depth: N/A

P.170 (INSTAPEC 1311) - LMIII A2, Horizontal Globular Flask. It is imported from Palaikastro and is painted with nested arcs, stemmed spirals and parallel chevrons (Soles 2008: 164; Smith 2002: 466).

Height: 0.071
Max. Diameter: 0.057
Rim Diameter: 0.02
Base Diameter: 0.022
Handle Width: 0.08
Handle Depth: 0.06

Height: Broken
Max. Diameter: 0.139
Rim Diameter: 0.083
Base Diameter: 0.089
Handle Width: Broken
Handle Depth: Broken

P.172 (INSTAPEC 3157) - LMIII A2-IIIB, Amphoroid Krater. Local vessel. Only a few fragments are extant but these fragments are painted with arcs, and groups of wavy lines (Soles 2008: 164; Smith 2002: 467).
No Image Available.

No Measurements Available.
P.173 (INSTAPEC 1320)- LMIIIA2-IIIB, Fragments of a Cooking Dish. Local vessel. It is undecorated (Soles 2008: 164; Smith 2002: 467).

Height of Fragment:
0.014

P.174 (INSTAPEC 1310)- LMIIIA2-IIIB, Piriform Stirrup Jar. It is imported from Palaikastro and is heavily decorated with painted motifs. These motifs include ladder slashes, nested triangles, semicircles and groups of wavy lines (Soles 2008: 164; Smith 2002: 467).

Height:
0.136

Max. Diameter:
0.103

Rim Diameter:
0.023

Base Diameter:
0.041

Handle Width:
Unspecified

Handle Depth:
Unspecified

Burial Containers:

B.17 (INSTAPEC 1506)- Burial Pithos. It has four handles and has several splotches of slip. It also has raised rope patterns on its body (Soles et al. 2011: 33).

Height:
1.01

Maximum Diameter:
0.644

Rim Diameter:
0.504-0.508

Base Diameter:
0.365-0.352
Jewelry and Personal Ornamentation:

J.28 (IIC.70, CA 131) - Bronze Ring. Only three non-joining fragments remain. It is rectangular in section (Soles et al. 2011: 46).

- Diameter: 0.019
- Maximum Width: 0.0032
- Maximum Thickness: 0.0017
- Weight: 0.4 g

Tools:

T.7 (IIC.628, CS 1194.2) - Obsidian Blade.

- Length: 0.0122
- Width: 0.072
- Thickness: 0.0016

T.8 (IIC.679, CS 1194.3) - Obsidian Blade.

- Length: 0.0127
- Width: 0.034
- Thickness: 0.0016

- Length: 0.073
- Maximum Width: 0.021
- Maximum Thickness: 0.0022
- Weight: 10.9 g
T.10 (IIC.105, CA 133)- Bronze Chisel. It is completely intact (Soles et al. 2011: 51).

Length: 0.072
Maximum Width: 0.008
Maximum Thickness: 0.0041
Weight: 6.9 g

T.11 (IIC.107, CA 137)- Bronze Cleaver/Razor. It is almost complete from eight pieces (Soles et al. 2011: 52).

Length: 0.277
Maximum Width: 0.061
Maximum Thickness: 0.0007-0.0044
Weight: 107.5 g

T.12 (IIC.97, CA 138)- Bronze Knife. It is completely intact (Soles et al. 2011: 51).

Length: 0.223
Maximum Width: 0.03
Maximum Thickness: 0.0012-0.0036
Weight: 100.4 g
Miscellaneous:

M.7 (IIC.218, Sh 16)-
Dolium Shell. It is intact (Soles et al. 2011: 65).

Tomb 18:

Tomb 18 is another of the non-chamber tomb burials in the cemetery. A burial jar and a stone bead were found in side of a natural rock cavity that was marked by a large schist slab. The cavity measured 1.25 m by 2 m. It contained a single burial. No pottery was found so no date can be given to the burial (Soles 2008: 164).

Burial Containers:

B.18 (INSTAPEC 1646)- Burial Jar. It is almost completely intact and is undecorated (Soles et al. 2011: 33).

Jewelry and Personal Ornamentation:

J.29 (IIC.43, S 245)- White Cylindrical Stone Bead. It is made of either marble or limestone (Soles et al. 2011: 42).
Tomb 19:

Tomb 19 is yet another of the non-chamber tombs in the cemetery. It is just a small indentation in the rock with a dromos, measuring 2.25 m long and 0.70-1.40 m wide, leading to it. Soles argues that a traditional chamber tomb was planned but collapsed during construction and was used despite this. The tomb contained four individuals and is dated to LMIIIA1 and potentially to LMIIIA2 (Soles 2008: 165; Smith 2002: 304).

Pottery:

P.175 (INSTAPEC 1396)- LMIIIA, Pulled-Rim Bowl. Local vessel. The bowl is dipped entirely (Soles 2008: 168; Smith 2002: 468).

P.176 (INSTAPEC 1519)- LMIIIA, Pulled-Rim Bowl. Local vessel. It is dipped (Soles 2008: 168; Smith 2002: 468).

P.177 (INSTAPEC 1549)- LMIIIA, Pulled-Rim Bowl. Local vessel. It is entirely dipped (Soles 2008: 168; Smith 2002: 468).
P.178 (INSTAPEC 1582) - LMIIIA, Conical Cup. Local vessel. The cup is undecorated (Soles 2008: 168; Smith 2002: 468).

P.179 (INSTAPEC 1587) - LMIIIA, Deep Cup. It is imported from Knossos and painted with parallel chevrons (Soles 2008: 168; Smith 2002: 469).

P.180 (INSTAPEC 1603) - LMIIIA, Rounded Handless Cup. Local vessel. The cup is entirely dipped in slip (Soles 2008: 168; Smith 2002: 469).

P.181 (INSTAPEC 1583) - LMIIIA, Rounded Handless Cup. Local vessel. The cup is entirely dipped in slip. It is nearly identical in size to P.181 (Soles 2008: 168; Smith 2002: 469).

P.182 (INSTAPEC 1526) - LMIIIA, Collar-Necked Jug. It is imported from Palaikastro and is dipped (Soles 2008: 168; Smith 2002: 469).
P.183 (INSTAPEC 1520)- LMIIIA, Collar-Necked Jug. Local vessel. The upper portion of the jug is dipped (Soles 2008: 168; Smith 2002: 470).

Height: 0.202
Max. Diameter: 0.166
Rim Diameter: 0.078
Base Diameter: 0.075
Handle Width: N/A
Handle Depth: N/A

P.184 (INSTAPEC 1527)- LMIIIA, Miniature Jug. Local vessel. The rim is broken and the jug is dipped in slip (Soles 2008: 168; Smith 2002: 470).

Height: 0.092
Max. Diameter: 0.075
Rim Diameter: Broken
Base Diameter: 0.035
Handle Width: Unspecified
Handle Depth: Unspecified

P.185 (INSTAPEC 1521)- LMIIIA, Trefoil-Mouthed Jug. Local vessel. It is dipped (Soles 2008: 168; Smith 2002: 470).

Height: 0.239
Max. Diameter: 0.181
Rim Diameter: N/A
Base Diameter: 0.069
Handle Width: Unspecified
Handle Depth: Unspecified

P.186 (INSTAPEC 1548)- LMIIIA, Trefoil-Mouthed Jug. Local vessel. It is dipped (Soles 2008: 168; Smith 2002: 470).

Height: 0.145
Max. Diameter: 0.118
Rim Diameter: N/A
Base Diameter: 0.044
Handle Width: Unspecified
Handle Depth: Unspecified

P.187 (INSTAPEC 1557)- LMIIIA, Handless Pyxis. It is imported from Palaikastro and is undecorated (Soles 2008: 168; Smith 2002: 471).

Height: 0.097
Max. Diameter: 0.128
Rim Diameter: 0.099
Base Diameter: 0.104
Handle Width: N/A
Handle Depth: N/A
P.188 (INSTAPEC 1528)- LMIIIA, Piriform Stirrup Jar. It is imported from Palaikastro. It is painted with simple foliate, arched, wavy lines and ladder slashes (Soles 2008: 168; Smith 2002: 471).

- Height: 0.169
- Max. Diameter: 0.126
- Rim Diameter: N/A
- Base Diameter: 0.044
- Handle Width: N/A
- Handle Depth: N/A

P.189 (INSTAPEC 1551)- LMIIIA1, Piriform Stirrup Jar. It is imported from Knossos and is painted with ladder slashes, nested triangles, zigzags, arched and wavy lines (Soles 2008: 168; Smith 2002: 471).

- Height: 0.103
- Max. Diameter: 0.081
- Rim Diameter: N/A
- Base Diameter: 0.029
- Handle Width: N/A
- Handle Depth: N/A

P.190 (INSTAPEC 1550)- LMIIIA1, Piriform Stirrup Jar. It is imported from Palaikastro. It was painted but the motifs used are unknown (Soles 2008: 168; Smith 2002: 471).

- Height: 0.088
- Max. Diameter: 0.07
- Rim Diameter: 0.016
- Base Diameter: 0.026
- Handle Width: N/A
- Handle Depth: N/A

Burial Containers:

B.19 (INSTAPEC 1619)- Burial Pithos. It is almost entirely complete. It has two handles and has patches of slip on the exterior (Soles et al. 2011: 32).

- Height: 0.71
- Maximum Diameter: 0.56
- Rim Diameter: 0.44
- Base Diameter: 0.272
B.20 (INSTAPEC 1622)- Burial Pithos. It is almost complete but is missing three of its four large handles. It also has four smaller handles. It has four raised bands with chevrons along its body (Soles et al. 2011: 32).

Height: 0.861
Maximum Diameter: 0.57
Rim Diameter: 0.50-0.55
Base Diameter: 0.261

Jewelry and Personal Ornamentation:

J.30 (IIC.71, CA 143)- Bronze Ring. Only two non-joining pieces are extant. It is formed from a bronze strip that is circular in section (Soles et al. 2011: 46).

Diameter: 0.016
Weight: 0.5 g

J.31 (IIC.93, CA 150)- Bronze Bracelet. It is intact and is circular in section (Soles et al. 2011: 49).

Diameter: 0.08
Weight: 16.1 g

J.32 (IIC.34, F 31)- Glass Paste Necklace of 27+ Beads. These 27+ beads make up Necklace 2. Only three of them are complete.

Length: 0.028
Width: 0.005-0.006
Thickness: 0.004

J.33 (IIC.35, F 38)- Oblong Faience Bead. It is a bluish gray color and has a flattened cylindrical shape (Soles et al. 2011: 42).

Length: 0.014
J.34 (IIC.44, S 204)- Three Stone Beads. Two were cylindrical carnelian beads and the third was an oblong limestone bead (Soles et al. 2011: 43).

<table>
<thead>
<tr>
<th>Length (of cylindrical beads):</th>
<th>0.005-0.006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (of oblong bead):</td>
<td>0.015</td>
</tr>
</tbody>
</table>

Tools:

T.13 (IIC.109, CA 148)- Bonze Fishhook. This is the only fishhook in the cemetery. It is intact (Soles et al. 2011: 52).

<table>
<thead>
<tr>
<th>Length:</th>
<th>0.035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight:</td>
<td>2.6 g</td>
</tr>
</tbody>
</table>

Tomb 20:

Tomb 20 is a chamber tomb of medium size that had a dromos measuring 2.4 m long and 0.84- 1.0 m wide. Most of the dromos was filled with rubble but the part closest to the door was blocked with a carefully built wall with a fossil gastropod placed on top. The chamber itself measures 1.20 m by 1.50 m. The tomb contained a single burial and dates to **LMIIIA** (Soles 2008: 170; Smith 2002: 304).

Pottery:

P.191 (INSTAPEC 1558)- LMIIIA, Pulled-Rim Bowl. Local vessel. It is dipped (Soles 2008: 170; Smith 2002: 472).

<table>
<thead>
<tr>
<th>Height:</th>
<th>0.108</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Diameter:</td>
<td>N/A</td>
</tr>
<tr>
<td>Rim Diameter:</td>
<td>0.156</td>
</tr>
<tr>
<td>Base Diameter:</td>
<td>0.053</td>
</tr>
<tr>
<td>Handle Width:</td>
<td>N/A</td>
</tr>
<tr>
<td>Handle Depth:</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Burial Containers:

B.21 (INSTAPEC 1621) - Burial Pithos. It was mended from 49 fragments found within the tomb. It has four handles and splashes of slip on the exterior (Soles et al. 2011: 33).

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>1.00</td>
</tr>
<tr>
<td>Maximum Diameter</td>
<td>0.63</td>
</tr>
<tr>
<td>Rim Diameter</td>
<td>0.43</td>
</tr>
<tr>
<td>Base Diameter</td>
<td>0.331-0.343</td>
</tr>
</tbody>
</table>

Miscellaneous:

M.8 (IIC.220, S 69) - Fossil Gastropod.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>0.055</td>
</tr>
<tr>
<td>Diameter</td>
<td>0.085</td>
</tr>
</tbody>
</table>

Tomb 21:

Tomb 21 is a pit tomb made up of two connecting parts. The first part is an elongated circle 1.30 m by 1.95 m and dug to a depth of 1.30 m. The second portion of the pit attached to the eastern side and measures 1.30 by 2.80 m. This second, eastern portion has a natural rock overhang. Only this second section was used for the burials while the outer section was filled in. The pit contained a single pithos burial and is potentially dated to **LMIIIA1 to LMIIIA2** (Soles 2008: 171; Smith 2002: 304).
Pottery:

P.192 (INSTAPEC 1437) - LMIIIA, Pulled-Rim Bowl. Local vessel. It is dipped (Soles 2008: 171; Smith 2002: 472).

- Height: 0.099
- Max. Diameter: N/A
- Rim Diameter: 0.163
- Base Diameter: 0.05
- Handle Width: N/A
- Handle Depth: N/A

P.193 (INSTAPEC 1398) - LMIIIA, Beak-Spouted Jug. Local vessel. It is undecorated (Soles 2008: 171; Smith 2002: 472).

- Height: 0.239
- Max. Diameter: 0.171
- Rim Diameter: N/A
- Base Diameter: 0.072
- Handle Width: N/A
- Handle Depth: N/A

P.194 (INSTAPEC 1438) - LMIIIA, Piriform Stirrup Jar. It is imported from Palaikastro and is painted with simple foliate and nested chevrons (Soles 2008: 171; Smith 2002: 472).

- Height: 0.094
- Max. Diameter: 0.075
- Rim Diameter: 0.016
- Base Diameter: 0.024
- Handle Width: N/A
- Handle Depth: N/A

Burial Containers:

B.22 (INSTAPEC 1623) - Burial Pithos. It is almost completely intact. It has a raised band around the body and eight handles in total (Soles et al. 2011: 33).

- Height: 0.88
- Maximum Diameter: 0.63
- Rim Diameter: 0.429
- Base Diameter: 0.308-0.311
Tools:

T.14 (IIC.108, CA 135) - Bronze Cleaver/Razor. It was pieced together from 12 fragments (Soles et al. 2011: 52).
- Length: 0.163
- Maximum Width: 0.047
- Maximum Thickness: 0.0008 - 0.042
- Weight: 62.9 g

T.15 (IIC.98, CA 136) - Bronze Knife. It is nearly intact (Soles et al. 2011: 51).
- Length: 0.182
- Maximum Width: 0.018
- Maximum Thickness: 0.0008 - 0.0036
- Weight: 33.5 g

Tomb 22:

Tomb 22 is a medium sized tomb with a dromos that measures 2.0 m long and 0.70 - 0.80 m wide. The dromos was filled in with rubble but the part closer to the chamber was filled with a constructed wall. Behind this wall was a large limestone slab that formed a sort of low step into the chamber. The chamber formed a rough circle of about 1.2 m in diameter with a ceiling that was 0.95 m above the floor. No body or burial container was found during the excavations but the presence of grave goods implies that there was once a body there. The tomb is dated to **LMIIIA1 and possibly LMIIIA2** (Soles 2008: 172; Smith 2002: 304).
Pottery:

P.195 (INSTAPEC 1446) - LMIIIA, Pulled-Rim Bowl. Local vessel. The bowl is entirely dipped in slip (Soles 2008: 172; Smith 2002: 473).

- Height: 0.107
- Max. Diameter: N/A
- Rim Diameter: 0.169
- Base Diameter: 0.052
- Handle Width: N/A
- Handle Depth: N/A

- Height: 0.212
- Max. Diameter: 0.176
- Rim Diameter: Broken
- Base Diameter: 0.07
- Handle Width: N/A
- Handle Depth: N/A

P.197 (INSTAPEC 1447) - LMIIIA, Piriform Stirrup Jar. Local vessel. It is painted with ladder slashes, nested triangles, zigzags, and simple crosshatching (Soles 2008: 172; Smith 2002: 473).

- Height: 0.097
- Max. Diameter: 0.075
- Rim Diameter: 0.023
- Base Diameter: 0.028
- Handle Width: N/A
- Handle Depth: N/A

Jewelry and Personal Ornamentation:

J.35 (IIC.72, CA 139) - Bronze Spiral Ring. Two non-joining pieces are left. It is formed from a rod that is circular in section (Soles et al. 2011: 46).

- Diameter: 0.019
- Weight: 1.9 g

J.36 (IIC.73, CA 140a) - Bronze Ring. It is almost completely intact and is formed from a band that is round in section (Soles et al. 2011: 46).

- Diameter: 0.016
- Weight: 0.5 g
J.37 (IIC.74, CA 140b)
Bronze Ring. Less than one quarter of the ring is left (Soles et al. 2011: 46).

Length: 0.011
Weight: 0.2 g

J.38 (IIC.75, CA 140c)
Bronze Ring. It is not entirely clear if it is a ring though. Only one piece remains (Soles et al. 2011: 46).

Length: 0.008
Weight: 0.1 g

J.39 (IIC.76, CA 141)
Bronze Ring. About one third of the ring is extant in two non-joining pieces. It is made of a bronze rod that is rectangular in section (Soles et al. 2011: 46).

Diameter: 0.01-0.015
Weight: 0.2 g

J.40 (IIC.77, CA 142b)
Possible Bronze Ring. There are three non-joining pieces left. It is not clear that the pieces are actually from the same object section (Soles et al. 2011: 46).

Length: 0.008

J.41 (IIC.84, CA 142a)
Bronze Pin. It is made up of four non-joining pieces (Soles et al. 2011: 48).

Length (of all four pieces): 0.015, 0.013, 0.011, 0.011
Weight: 2.3 g
Tomb 23:

Tomb 23 is a small chamber tomb with a dromos that measures 1.0 m long and 1.10 m wide. It was filled with rubble and had a low step carved into the bedrock leading into the chamber. The entire ceiling had collapsed before excavation but the chamber itself measures 1.10 m by 1.40 m. It contained two individuals and is dated to LMIIIA (Soles 2008: 172-173).

Pottery:

P.198 (INSTAPEC 1534)- LMIIIA, Pulled-Rim Bowl. Local vessel. It is dipped (Soles 2008: 173; Smith 2002: 473).

- Height: 0.09
- Max. Diameter: N/A
- Rim Diameter: 0.155
- Base Diameter: 0.045
- Handle Width: N/A
- Handle Depth: N/A

P.199 (INSTAPEC 1535)- LMIIIA, Pulled-Rim Bowl. Local vessel. It is dipped (Soles 2008: 173; Smith 2002: 473).

- Height: 0.064
- Max. Diameter: N/A
- Rim Diameter: 0.108
- Base Diameter: 0.032
- Handle Width: N/A
- Handle Depth: N/A

- Height: 0.198
- Max. Diameter: 0.157
- Rim Diameter: 0.065
- Base Diameter: 0.06
- Handle Width: N/A
- Handle Depth: N/A
Burial Containers:

B.23 (INSTAPEC 1620)- Small Pithos. It is nearly complete. It had three handles and was undecorated (Soles et al. 2011: 34).

Height: 0.585
Maximum Diameter: 0.457
Rim Diameter: 0.264
Base Diameter: 0.225

Tomb 24:

Tomb 24 is a medium sized chamber tomb with a dromos that measure 1.80 m long ans 1.25 m wide. It was filled in with dirt and rubble. Most of the chamber itself was caved in but it seems to have measures 0.85 m by 1.20 m. It contained a single burial and based on the two pieces of pottery within, it can be dated to the LMIIIA period (Soles 2008: 174).

Pottery:

P.201 (INSTAPEC 1593)- LMIII A, Pulled-Rim Bowl. Local vessel. It is dipped (Soles 2008: 174; Smith 2002: 474).

Height: 0.093
Max. Diameter: N/A
Rim Diameter: 0.15
Base Diameter: 0.049
Handle Width: N/A
Handle Depth: N/A

Burial Containers:

B.24 (INSTAPEC 1618) - Burial Pithos. It is nearly complete. It has two handles and a raised band around the body (Soles et al. 2011:3 3).
Tomb 25:

Tomb 25 consists of a single pithos that was found in a number of fragments in the dromos of Tomb 11. No constructed tomb is associated with the burial. **No date** is provided for the tomb (Soles 2008: 175).

Burial Containers:

B.25 (INSTAPEC 990)
- Burial Pithos. Much of it is broken. It has four vertical handles and has three raised bands around the body (Soles et al. 2011: 34).

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>0.752</td>
</tr>
<tr>
<td>Maximum Diameter</td>
<td>0.554</td>
</tr>
<tr>
<td>Rim Diameter</td>
<td>0.352</td>
</tr>
<tr>
<td>Base Diameter</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Tomb 26:

Tomb 26 is a small chamber tomb with a rather unusual stone platform built on top of it. The platform is 1.20 m long, 0.70 m wide and 0.50 m high. Tomb 27 has a similar platform, but the purpose of both are unknown. Tomb 26’s dromos is relatively small and measures 1.80 m long and 0.90 m wide. The front and ceiling of the chamber itself were not preserved but it measures 1.20 m by 1.50 m. The tomb contained a single skeleton upon excavation and can be dated to **LMIIIA1** and possibly into **LMIIIA2** (Soles 2008: 177; Smith 2002: 304).
Pottery:

P.203 (INSTAPEC 1616) - LMIIIA, Pulled-Rim Bowl. Local vessel. The bowl is dipped (Soles 2008: 177; Smith 2002: 475).

Height: 0.091
Max. Diameter: N/A
Rim Diameter: 0.136
Base Diameter: 0.045
Handle Width: N/A
Handle Depth: N/A

P.204 (INSTAPEC 1602) - LMIIIA, Globular Vertical Flask. It is imported from Knossos. It is painted with groups of wavy lines, simple foliate, crosshatched circles and parallel slashes (Soles 2008: 177; Smith 2002: 475).

Height: 0.277
Max. Diameter: 0.185
Rim Diameter: 0.066
Base Diameter: 0.072
Handle Width: 0.011
Handle Depth: 0.008

P.205 (INSTAPEC 1673) - LMIIIA, Miscellaneous Vessel. It is imported from Knossos. It is heavily fragmented and undecorated (Soles 2008: 177; Smith 2002: 475).

Height: Broken
Max. Diameter: Broken
Rim Diameter: Broken
Base Diameter Broken
Handle Width: Broken
Handle Depth: Broken

Burial Containers:

B.26 (INSTAPEC 1624) - Burial Pithos. It has four handles in total but is otherwise undecorated (Soles et al. 34).

Height: 0.78
Maximum Diameter: 0.69
Rim Diameter: 0.398
Base Diameter: 0.385
Tomb 27:

Tomb 27 is a medium shaped tomb and like Tomb 26 it has an irregular platform of stones that covered a unique construction that measured 0.55 – 0.80m by 1 m and 0.50 m high. The construction was a large schist slab, some stones set up around it and a pithos. Two items from the Early Orientalizing period were found under this unusual platform as well. When the unusual construction was removed a chamber tomb was beneath. The tomb had a poorly preserved dromos and measured 1 m long. The ceiling of the tomb seems to have been removed in antiquity but the chamber itself measures 1 m by 1.5 m (Soles 2008: 178). Soles states that the tomb was reopened in during the Early Orientalizing period and that the skeleton was removed. The act of reopening Mycenaean tombs identified as hero burials, putting in new offerings and removing the body for a secondary burial was common on the Mainland, so this may explain the presence of EO pottery in the tomb (Soles 2008: 179). There was only one piece of non-EO pottery in the tomb, a kylix, which is dated to **LMIIIa2** (Smith 2002: 304).

Pottery:

P.206 (INSTAPEC 1636)- LHIIIa2, Kylix.

It is imported from the mainland and is painted. It is very broken. This is the only object that is associated with the original burial. During the early Orientalizing period, the tomb was disturbed (Soles 2008: 179; Smith 2002: 475).
Burial Containers:

B.27 (INSTAPEC 1626)- Burial Pithos. It has two handles and is undecorated otherwise (Soles et al. 2011: 34).

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>0.82</td>
</tr>
<tr>
<td>Maximum Diameter</td>
<td>0.587</td>
</tr>
<tr>
<td>Rim Diameter</td>
<td>0.435</td>
</tr>
<tr>
<td>Base Diameter</td>
<td>0.325</td>
</tr>
</tbody>
</table>

Tomb 28:

Tomb 28 is the best preserved tomb in the cemetery. It has a dromos that measures 2.30 m long and 0.75 m wide. The dromos is quite long for the tombs at Limenaria. The entrance to the chamber formed an actual doorway that was still intact and measured 0.70 m high and 0.75 m wide. It also had a carefully laid threshold that led into the tomb. Soles states that while nice, this doorway is not as well constructed as that of Tomb 13 as it lacks door jams (Soles 2008: 180). The chamber itself is circular and has a diameter of 1.05 m and a ceiling that is 0.9 m above the floor level (Soles 2008: 180). The tomb contained a single burial. No pottery was found in it though so the tomb does not have a precise date.
Burial Containers:

B.28 (INSTAPEC 1625)- Burial Pithos. It has four vertical handles and is otherwise undecorated (Soles et al 2011: 34).

- Height: 0.82
- Maximum Diameter: 0.568
- Rim Diameter: 0.335
- Base Diameter: 0.24

Tomb 29:

Tomb 29 is unusual as it looks to the north towards the island of Mochlos rather than west like the rest of the tombs. It is relatively isolated in its location. The dromos was formed from a natural rock cavity that is about 2.50 m long and 0.85-1.10 m wide.

The chamber is well preserved and measures 1.20 m by 1.70 m with a ceiling 0.90 m above the floor level. It contained two burials though no burial containers were found.

It has a relatively long period of use for the Limenaria cemetery spanning from **LMIIIA1-IIIB**. The only other tomb with a period of use this long in the cemetery is Tomb 2 (Smith 2002: 304).

Pottery:

P.207 (INSTAPEC 1758)- LMIIIA2-IIIB, Small Amphora. Local vessel. It is painted with an FM 18 flower, parallel slashes and wide bands around the body (Soles 2008: 181; Smith 2002: 476).

- Height: 0.172
- Max. Diameter: 0.166
- Rim Diameter: 0.04
- Base Diameter: 0.1
- Handle Width: 0.018
- Handle Depth: 0.011
P.208 (INSTAPEC 1759) - LMIIIa-IIIB, Conical Cup. Local vessel. It is undecorated (Soles 2008: 181; Smith 2002: 476).

Height: 0.054
Max. Diameter: N/A
Rim Diameter: 0.115
Base Diameter: 0.045
Handle Width: N/A
Handle Depth: N/A

P.209 (INSTAPEC 1724) - LMIIIa-IIIB, Conical Cup. Local vessel. It is undecorated (Soles 2008: 181; Smith 2002: 476).

Height: 0.046
Max. Diameter: N/A
Rim Diameter: 0.107
Base Diameter: 0.04
Handle Width: N/A
Handle Depth: N/A

P.210 (INSTAPEC 1729) - LMIIIa1, Piriform Jar. It is imported from Knossos and is painted with banded dots and simple foliate (Soles 2008: 181; Smith 2002: 476).

Height: 0.117
Max. Diameter: 0.149
Rim Diameter: 0.103
Base Diameter: 0.053
Handle Width: 0.011
Handle Depth: 0.005

P.211 (INSTAPEC 1742) - LMIIIa1, Miniature Jug. It is imported from Palaikastro and is painted with simple foliate (Soles 2008: 181; Smith 2002: 477).

Height: 0.065
Max. Diameter: 0.064
Rim Diameter: N/A
Base Diameter: 0.03
Handle Width: Unspecified
Handle Depth: Unspecified

P.212 (INSTAPEC 1713) - LMIIIa-IIIB, Miscellaneous Jug. Local vessel. It is undecorated and the mouth and handle is broken (Soles 2008: 181; Smith 2002: 477).

Height: 0.112
Max. Diameter: 0.117
Rim Diameter: Broken
Base Diameter: 0.05
Handle Width: Broken
Handle Depth: Broken
P.213 (INSTAPEC 1768) - LMIIIA, Narrow-Necked Jug. It is imported from Gournia and is painted with ladder slashes, running spirals and tapering slashes (Soles 2008: 181; Smith 2002: 477).

P.214 (INSTAPEC 1743b) - LMIIIA, Flat Pyxis Lid. Local vessel. It is painted with ladder slashes and is associated with an LMIIIB pyxis (Soles 2008: 181; Smith 2002: 477).

P.217 (11070) - LMIIIA-IIIB, Squat Stirrup Jar. Local vessel. It is undecorated (Soles 2008: 181; Smith 2002: 499).
Tomb 30:

Tomb 30 is a medium sized chamber tomb with a dromos that measures 1.75 m in length and 0.90-1.30 m in width. The dromos has large stone barriers at two points with the rest filled in with soil. The chamber of the tomb has a built stone step leading into it and measures 1.30 m by 1.85 m. It has a ceiling that is 1.10 m above the floor level. The tomb contained a single burial in a larnax and is dated to **LMIIIA1** (Soles 2008: 182-183; Smith 2002: 304).

Pottery:

P.218 (11075)-LMIIIA1, Pulled-Rim Bowl. It is imported from Palaikastro and is dipped (Soles 2008: 182; Smith 2002: 500).

<table>
<thead>
<tr>
<th>Height</th>
<th>Max. Diameter</th>
<th>Rim Diameter</th>
<th>Base Diameter</th>
<th>Handle Width</th>
<th>Handle Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.103</td>
<td>N/A</td>
<td>0.157</td>
<td>0.059</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

P.219 (11071)- LMIIIA1, Collar-Necked Jug. Local vessel. It is painted with simple wavy lines, nested arcs, parallel slashes and linear dots (Soles 2008: 182; Smith 2002: 500).

<table>
<thead>
<tr>
<th>Height</th>
<th>Max. Diameter</th>
<th>Rim Diameter</th>
<th>Base Diameter</th>
<th>Handle Width</th>
<th>Handle Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.22</td>
<td>0.236</td>
<td>0.124</td>
<td>0.126</td>
<td>Unspecified</td>
<td>Unspecified</td>
</tr>
</tbody>
</table>

P.220 (11072)- LMIIIA1, Narrow-Necked Jug. Local vessel. It is painted with simple foliate, running spirals, parallel slashes and groups of wavy lined (Soles 2008: 182; Smith 2002: 500).

<table>
<thead>
<tr>
<th>Height</th>
<th>Max. Diameter</th>
<th>Rim Diameter</th>
<th>Base Diameter</th>
<th>Handle Width</th>
<th>Handle Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.322</td>
<td>0.22</td>
<td>0.074</td>
<td>0.07</td>
<td>Unspecified</td>
<td>Unspecified</td>
</tr>
</tbody>
</table>
P.221 (11076)- LMIIIA, Amphoroid Krater. Local vessel. It is painted with wide bands around its body (Soles 2008: 182; Smith 2002: 500).

P.222 (11073)- LMIIIA1, Miscellaneous Pottery. Local vessel. Its method of decoration is unknown. Only the base is extant (Soles 2008: 182; Smith 2002: 501).

Burial Containers:

B.29 (11342a and b)- Chest Larnax with Saddle-Shaped Lid. The body of the larnax has four handles and 15 drainage holes on the bottom. The lid also had four horizontal handles. Both the base and the lid are decorated with irregular splashes of slip (Soles et al. 2011: 29).

Jewelry and Personal Ornamentation:

J.42 (11447)- Bronze Pin or Punch. Only about half of the pin is extant and it has a point at the end. It is cylindrical in section (Soles et al. 2011: 48).
J.43 (11448)- Bronze Pin or Punch. It is completely intact. It is square in section (Soles et al. 2011: 48).

Tools:

T.16 (11445)- Bronze Knife with a Rounded Tip. There are a few chips along the edge of the blade but is otherwise intact (Soles et al. 2011: 50).

T.17 (11446)- Bronze Razor of Knife. As with T.16, it is nearly complete besides some chips along the blade (Soles et al. 2011: 50).

Tomb 31

Tomb 31 dates to LMIIIB and will be described below in the LMIIIB section.
Myrsini:
The cemetery of Myrsini at Aspropilia was excavated in 1960 by Platon. It is located on the hills above the north coast and contained 12 tombs dating from LMIIIA1 to LMIICC (Kanata 1980: 163). They are all chamber tombs besides Tomb 44 (Tomb Gamma) though I do not have access to information on the sizes or construction of them.

Tomb 32 (Tomb A)
Tomb 32 has a very long period of use with pottery from as early as LMIIIA1 and as late as LMIICC. Much of the tomb’s pottery is dated to just LMIII and can be found in the last section of the chapter. The tomb was disturbed before excavation and contained a single burial (Smith 2002: 156).

Pottery:

P.223 (AN 1959)-
LMIIIA, Conical Rhyton. Cretan. It is painted with simple foliate, wavy lines and ladder slashes (Smith 2002: 513).

<table>
<thead>
<tr>
<th>Height</th>
<th>Max. Diameter</th>
<th>Rim Diameter</th>
<th>Base Diameter</th>
<th>Handle Width</th>
<th>Handle Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.346</td>
<td>N/A</td>
<td>0.109</td>
<td>0.017</td>
<td>0.018</td>
<td>0.01</td>
</tr>
</tbody>
</table>

P.224 (AN 1934)-
LMIIIA2, Amphoroid Krater. Cretan. It is painted with groups of foliate motifs and wavy lines (Smith 2002: 508).

<table>
<thead>
<tr>
<th>Height</th>
<th>Max. Diameter</th>
<th>Rim Diameter</th>
<th>Base Diameter</th>
<th>Handle Width</th>
<th>Handle Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.331</td>
<td>0.285</td>
<td>0.213</td>
<td>0.095</td>
<td>0.037</td>
<td>0.008</td>
</tr>
</tbody>
</table>
P.225 (AN 1942b)
LMIIIA, Flat Walled Pyxis Lid. Cretan. It is painted though the image is not clear enough to see how it is painted (Smith 2002: 513).

P.226 (AN 1942a)
LMIIIA, Handless Pyxis. Cretan. It is painted with wavy lines and is associated with P.232 above (Smith 2002: 513).

P.227 (AN 1936)
LMII?, Deep Cup. Cretan. This is the earliest vessel in the cemetery but its date is not entirely certain. It is dipped (Smith 2002: 509).

P.228 (AN 1960)
LMIIIA, Conical Rhyton. Cretan. It is painted with solid triangles, nested arcs, zigzags and simple dots (Smith 2002: 509).

P.229 (AN 1937)
LMIIIA, Beak-Spouted Jug. Cretan. It is painted with semicircles, solid triangles, nested arcs and zigzags (Smith 2002: 509).
P.230 (AN 1938) -
LMIIIA, Beak-Spouted Jug. Cretan. It is painted with group chevrons and wavy lines (Smith 2002: 508).

Height: 0.208	Max. Diameter: 0.162
Rim Diameter: N/A	Base Diameter: 0.062
Handle Width: 0.019	Handle Depth: 0.011

P.231 (AN 1943) -
LMIIIA1, Rim-Handled Kalathos. Cretan. It is painted with concentric lozenges, ladder slashes, solid circled and nested triangles (Smith 2002: 511).

Height: 0.118	Max. Diameter: N/A
Rim Diameter: 0.321	Base Diameter: 0.28
Handle Width: 0.032	Handle Depth: 0.011

P.232 (AN 1935) -
LMIIIA1, Beak-Spouted Jug. Cretan. It is painted with a lily flower, concentric semicircles, chevrons and wavy lines (Smith 2002: 511).

Height: 0.342	Max. Diameter: 0.233
Rim Diameter: N/A	Base Diameter: 0.084
Handle Width: 0.029	Handle Depth: 0.015

Weapons:

W.2 – sword.
No Image Available.
No Measurements Available.

Miscellaneous:

M.9- triton shell.
No Image Available.
No Measurements Available.

M.10- triton shell.
No Image Available.
No Measurements Available.

Tomb 33 (Tomb B):

Like Tomb 32, Tomb 33 has a very long period of use. It also has pottery dating from LMIIIA1 to LMIIIC and contained a single burial (Kanta 1980: 172).
Pottery:

P.233 (AN 1899)

Height: 0.072
Max. Diameter: 0N/A
Rim Diameter: 0.109
Base Diameter: 0.038
Handle Width: N/A
Handle Depth: N/A

P.234 (AN 1910)
LMIII A, Funnel Rhyton. Cretan. It is painted with wavy lines and grouped wavy lines (Smith 2002: 514).

Height: 0.166
Max. Diameter: 0.128
Rim Diameter: 0.08
Base Diameter: 0.016
Handle Width: 0.011
Handle Depth: 0.008

P.235 (AN 1886)

Height: 0.295
Max. Diameter: 0.196
Rim Diameter: N/A
Base Diameter: 0.073
Handle Width: 0.029
Handle Depth: 0.012

P.236 (AN 1889)

Height: 0.157
Max. Diameter: 0.126
Rim Diameter: N/A
Base Diameter: 0.052
Handle Width: 0.019
Handle Depth: 0.01

P.237 (AN 1885)
LMIII A1, Beak-Spouted Jug. Cretan. It is painted with simple foliate, banded dots, zigzags, and ladder slashes. It is an elaborate, delicate shape and quite different from other beak spouted jugs found in the cemetery (Smith 2002: 515).

Height: 0.234
Max. Diameter: 0.185
Rim Diameter: N/A
Base Diameter: 0.058
Handle Width: 0.022
Handle Depth: 0.01
P.238 (AN 1888)

Height: 0.157
Max. Diameter: 0.146
Rim Diameter: 0.083
Base Diameter: 0.074
Handle Width: 0.022
Handle Depth: 0.011

P.239 (AN 1887)

Height: 0.212
Max. Diameter: 0.171
Rim Diameter: 0.096
Base Diameter: 0.068
Handle Width: 0.027
Handle Depth: 0.013

P.240 (AN 1903)
LMIIIA2, Amphoroid Krater. Cretan. It is painted with alternating nested arcs (Smith 2002: 516).

Height: 0.386
Max. Diameter: 0.316
Rim Diameter: 0.23
Base Diameter: 0.118
Handle Width: 0.039
Handle Depth: 0.012

P.241 (AN 1892)
LMIIIA, Conical Rhyton. Cretan. It is painted with a papyrus flower, an FM 18 flower, wavy lines, simple foliate, and banded dots. It is elaborately decorated (Smith 2002: 515).

Height: 0.406
Max. Diameter: N/A
Rim Diameter: 0.118
Base Diameter: 0.008
Handle Width: 0.024
Handle Depth: 0.01

P.242 (AN 1909)
LMIIIA, Piriform Stirrup Jar. Cretan. It is painted with ladder slashes, triangles and semicircles (Smith 2002: 517).

Height: 0.125
Max. Diameter: 0.099
Rim Diameter: 0.019
Base Diameter: 0.033
Handle Width: 0.017
Handle Depth: 0.006

P.243 (AN 1890)
LMIIIA1, Globular-Conical Stirrup Jar. Cretan. It is painted with ladder slashes, and iris flower, simple foliate and...
nested triangles (Smith 2002: 517).

P.244 (AN 1902)
LMIIIA1, Beak Spouted Jug. Cretan. It is painted with wavy lines, nested arcs, and semicircles (Smith 2002: 517).

<table>
<thead>
<tr>
<th>No Image Available</th>
<th>Height: 0.428</th>
<th>Max. Diameter: 0.257</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rim Diameter: N/A</td>
<td>Base Diameter: 0.1</td>
</tr>
<tr>
<td></td>
<td>Handle Width: 0.043</td>
<td>Handle Depth: 0.012</td>
</tr>
</tbody>
</table>

P.245 (3524)
LMIIIA, Miniature Jug. Cretan. It is dipped (Smith 2002: 519).

<table>
<thead>
<tr>
<th>Height: 0.07</th>
<th>Max. Diameter: 0.061</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rim Diameter: N/A</td>
<td>Base Diameter: 0.03</td>
</tr>
<tr>
<td>Handle Width: 0.011</td>
<td>Handle Depth: 0.005</td>
</tr>
</tbody>
</table>

Burial Containers:

B.30- Chest Larnax.

| No Image Available | No Measurements Available. |

Tools:

T.18- Bronze tool.

| No Image Available | No Measurements Available. |

T.19- Bronze tool.

| No Image Available | No Measurements Available. |

Miscellaneous:

M.11- Triton.

| No Image Available | No Measurements Available. |

M.12- Triton.

| No Image Available | No Measurements Available. |
Tomb 34 (Tomb Delta):

Tomb 34 was destroyed by bulldozers before it could be excavated. It still has quite a few vessels and dates from LMIIIA1 to LMIIIB. It contained a single burial (Smith 2002: 158).

Pottery:

P.246 (3500)- LMIIIA, Cupped Ring Vase. Cretan. It is painted with ladder slashes (Smith 2002: 521).

- Height: 0.03
- Max. Diameter: 0.09
- Rim Diameter: 0.048
- Base Diameter: N/A
- Handle Width: N/A
- Handle Depth: N/A

P.247 (AN 1875)- LMIIIA1, Miscellaneous Jug. Cretan. It is painted with mirrored foliate motifs (Smith 2002: 521).

No Image Available.

- Height: Unknown
- Max. Diameter: 0.185
- Rim Diameter: Unknown
- Base Diameter: 0.061
- Handle Width: Unknown
- Handle Depth: Unknown

P.248 (AN 1879)- LMIIIA, Conical Rhyton. Cretan. It is painted with wavy lines, a papyrus flower, horns of consecration, double axe and zigzags. The horns of consecration and the double axe are relatively rare within the cemetery (Smith 2002: 521).

- Height: 0.22
- Max. Diameter: N/A
- Rim Diameter: 0.118
- Base Diameter: N/A
- Handle Width: 0.03
- Handle Depth: 0.01

P.249 (AN 1877)- LHIIIA2, Piriform Stirrup Jar. It is imported from the Mainland and painted with nested chevrons and solid semicircles (Smith 2002: 522).

- Height: 0.146
- Max. Diameter: 0.117
- Rim Diameter: 0.03
- Base Diameter: 0.041
- Handle Width: 0.012
- Handle Depth: 0.004
P.250 (AN 1878)-
LMIIIA2, Miniature Jug. Cretan. It is painted with groups of wavy lines (Smith 2002: 522).

P.251 (AN 1876)-
LMIIIA1, Narrow-Necked Jug. Cretan. It is painted with mirrored foliate, crosshatching and simple wavy lines (Smith 2002: 522).

P.252 (AN 1883)-
LMIIIA2, Piriform Jar. Cretan. It is painted with papyrus flowers, semicircles, stemmed spirals, nested arcs, solid triangles and zigzags (Smith 2002: 522).

P.253 (AN 1884)-
LMIIIA, Fenestrated Stand. Cretan. It is painted with ladder slashes and parallel slashes (Smith 2002: 523).

Burial Containers:

B.31- Chest Shaped Larnax. The larnax is decorated with lion head relief on its lid.

Tomb 35 (Tomb Epsilon):

Tomb 35 was more carefully constructed than many of the other tombs. It had a stomion that was closed off by a built wall. The tomb contained a single burial and can be dated from LMIIIA1 to LMIIIIB (Smith 2002: 158).
Pottery:

P.255 (AN 1931) - LMIIIA1, Piriform Stirrup Jar. Cretan. It is painted with simple foliate, ladder slashes, wavy lines, semicircles and triangles (Smith 2002: 523).

P.256 (AN 1930 bottom) - LMIIIA, Thymiaterion Base. Cretan. It is dipped (Smith 2002: 524).

P.257 (AN 1930 top) - LMIIIA, Thymiaterion Cover. Cretan. It is painted with solid triangles, and zigzags (Smith 2002: 524).

P.258 (AN 1926 bottom) - LMIIIA, Thymiaterion Base. Cretan. It is painted with simple bands (Smith 2002: 524).
P.259 (AN 1926 top)-LMIIIA, Thymiaterion Cover. Cretan. It is dipped (Smith 2002: 524).

P.260 (AN 1924)-LMIIIA2, Small Amphora. Cretan. It is elaborately painted with ladder slashes, stemmed spirals, wavy lines, and nested arcs (Smith 2002: 525).

P.261 (AN 1927)-LMIIIA-IIIB, Pulled-Rim Bowl. Cretan. It is dipped (Smith 2002: 525).

P.262 (AN 1921)-LMIIIA, Trefoil-Mouthed Jug. Cretan. The entire vessel is dipped (Smith 2002: 525).

P.263 (AN 1932)-LMIIIA2, Piriform Stirrup Jar. Cretan. It is painted with nested triangles, simple foliate and simple dots (Smith 2002: 526).

Height: 0.115
Max. Diameter: 0.12
Rim Diameter: 0.028
Base Diameter: 0.108
Handle Width: N/A
Handle Depth: N/A

Height: 0.209
Max. Diameter: 0.18
Rim Diameter: 0.052
Base Diameter: 0.08
Handle Width: 0.021
Handle Depth: 0.009

Height: 0.112
Max. Diameter: N/A
Rim Diameter: 0.165
Base Diameter: 0.048
Handle Width: N/A
Handle Depth: N/A

Height: 0.182
Max. Diameter: 0.141
Rim Diameter: N/A
Base Diameter: 0.053
Handle Width: 0.021
Handle Depth: 0.01

Height: 0.081
Max. Diameter: 0.055
Rim Diameter: 0.02
Base Diameter: 0.022
Handle Width: 0.06
Handle Depth: 0.06
P.264 (AN 1922)-
LMIIIA, Miniature Jug.
Cretan. It is painted with
concentric semicircles
and simple foliate (Smith

Height: 0.068
Max. Diameter: 0.063
Rim Diameter: N/A
Base Diameter: 0.025
Handle Width: 0.007
Handle Depth: 0.006

P.265 (AN 1920)-
LMIIIA2, Small
Amphora. Cretan. It is
dipped (Smith 2002: 526).

Height: 0.161
Max. Diameter: 0.143
Rim Diameter: N/A
Base Diameter: 0.065
Handle Width: 0.019
Handle Depth: 0.01

Burial Containers;
B.32- Chest Larnax.
No Image Available.
No Measurements Available.

Tomb 36 (Tomb H):

Tomb 36 was relatively small and contained a single burial inside of a tub larnax. It is
dated from LMIIIA2- LMIIIB (Smith 2002: 159).

Pottery:

P.266 (AN 1914)-
LMIIIA2-IIIB, Side-
Handled Kalathos.
Cretan. It is painted with
simple crosshatching
(Smith 2002: 529).

Height: 0.123
Max. Diameter: N/A
Rim Diameter: 0.184
Base Diameter: 0.087
Handle Width: 0.012
Handle Depth: 0.011

P.267 (AN 1915)-
LMIIIA2, Spouted Ring
Vase. Cretan. It is
dipped. This shape is rare
within the cemetery
(Smith 2002: 529).

Height: 0.036
Max. Diameter: 0.109
Rim Diameter: 0.027
Base Diameter: 0.037
Handle Width: 0.009
Handle Depth: 0.009
P.268 (AN 1913)-
LMIIIA2, Rim-Handled Kalathos. Cretan. It is painted with zigzags, scale-patterned arcs, zigzags, solid triangles, and crosshatching (Smith 2002: 526).

P.269 (AN 1912)-
LMIIIA2, Double Bowl Composite Vessel. Cretan. It is elaborately painted with concentric semicircles, nested arcs, wavy lines, and simple dots (Smith 2002: 530).

P.270 (AN 1917)-
LMIIIA2, Globular Jar. Cretan. It is painted with crosshatching, scale-patterned arcs, linear dots, and zigzags (Smith 2002: 530).

P.271 (AN 1929)-
LMIIIA2, Thymiaterion Cover. Cretan. It is painted with wavy lines, solid triangles, horns of consecration, and a double axe. Like P.248, this vessel has both the horns of consecration and the double axe. These motifs are seen far less frequently in the nearby cemetery at Mochlos (Smith 2002: 530).
P.272 (3507)- LMIIIA2-IIIB, Pulled-Rim Bowl. Cretan. The vessel is dipped (Smith 2002: 531).

P.273 (AN 1911)- LMIIIA, Globular-Conical Thelastron. Cretan. It is painted with simple foliate, ladder slashes, and wavy lines (Smith 2002: 531).

P.274 (3508) - LMIIIA2-IIIB, Standard Brazier. Cretan. It is undecorated (Smith 2002: 531).

Burial Containers;

Jewelry and Personal Ornamentation:
J.44- Bronze mirror No Image Available. No Measurements Available.

Tomb 37 (Tomb IB):

Tomb 37, like Tomb 35, had a stomion that was blocked by a built wall. It contained two burials and is one of only two tombs in the Myrsini cemetery that contains more than one burial, with the other being Tomb 52. It also has a very long period of use dating from LMIIIA1 to LMIIIIC (Smith 2002: 161, 304).
Pottery:

P.275 (AN 1971)-LMIIIA, Pulled-Rim Bowl. Cretan. It is painted with concentric lozenges and simple dots (Smith 2002: 536).

- Height: 0.13
- Max. Diameter: N/A
- Rim Diameter: 0.17
- Base Diameter: 0.051
- Handle Diameter: N/A
- Handle Depth: N/A

P.276 (AN 1972)-LMIIIA, Piriform Jar. Cretan. It is painted with scale-patterned arcs (Smith 2002: 536).

- Height: 0.16
- Max. Diameter: 0.15
- Rim Diameter: 0.097
- Base Diameter: 0.054
- Handle Width: 0.007
- Handle Depth: 0.007

P.277 (AN 1979)-LMIIIA2, Spouted Ring Vase. Cretan. It is dipped. The image provided is, unfortunately, very unclear (Smith 2002: 539).

- Height: 0.023
- Max. Diameter: 0.074
- Rim Diameter: 0.04
- Base Diameter: Unspecified
- Handle Width: N/A
- Handle Depth: N/A

P.278 (AN 1969)-LMIIIA, Piriform Stirrup Jar. Cretan. It is painted with simple foliate, semicircles and stemmed spirals (Smith 2002: 539).

- Height: 0.08
- Max. Diameter: 0.06
- Rim Diameter: 0.018
- Base Diameter: 0.019
- Handle Width: 0.007
- Handle Depth: 0.005

P.279 (AN 1968)-LMIIIA, Piriform Stirrup Jar. Cretan. It is painted with simple foliate and groups of ladder slashes (Smith 2002: 539).

- Height: 0.078
- Max. Diameter: 0.062
- Rim Diameter: 0.017
- Base Diameter: 0.019
- Handle Width: 0.007
- Handle Depth: 0.006
P.280 (AN 1967) - LMIIIA1, Pulled-Rim Bowl. Cretan. It is painted with antithetic foliate, semicircles and banded dots (Smith 2002: 540).

P.281 (AN 1973) - LMIIIA1, Triple-Jug Composite Vessel. Cretan. It is painted with papyrus flowers, zigzags, groups of wavy lines, nested chevrons, a bird, a bucranium, and semicircles. This is a very unusual shape (Smith 2002: 541).

Burial Containers:

B.34 - Pithos

No Image Available. No Measurements Available.

Pakhyammos:

Pakhyammos is a region in Eastern Crete within the district of Ierapetra. It is about 1 km from the Minoan palace of Gournia putting it in close proximity to the shore of Mirabello bay. A number of LMIII cemeteries have been found in this region (Kanta 1980: 143).

Tomb 38 (Aissa Langadha 1)

This is a location southeast of Alatsomouri. Several pithos burials were found there but Kanta doesn’t provide information on all of them nor does she provide images of the pottery or pithoi. A pyxis from this burial was documented by Kanta. She states that this tomb had 17 vases, a fragment of a mirror, a bead and a pin. Nothing is
stated about the material of any of these objects. She dates the burial to **LMIIIA2** (Kanta 1980: 143).

Burial Containers:

| B.35- Pithos | No Image Available. | No Measurements Available. |

Jewelry and Personal Ornamentation:

J.45- Mirror	No Image Available.	No Measurements Available.
J.46- Bead	No Image Available.	No Measurements Available.
J.47- Pin	No Image Available.	No Measurements Available.

Tomb 39 (Aissa Langadha 2)

This is another of the pithos burial located to the southeast of Alatsomouri. Like Tomb 38, Kanta does not provide much information on the burial or the objects found with the burial. She states that the pithos was found in a pit with two skulls, ten vases, a round pyxis containing beads and a baby’s skull. She states that the date of this burial is also **LMIIIA2** (Kanta 1980: 143).

Pottery:

| P.282 (MS 4667)- | Height: 0.24 |
| Most likely LMIIIA2, Handless Straight-Sided Pyxis. Local vessel. It is painted with a light slip and is decorated with a scalloped pattern (Cretan Collection Volume 3: 2017). | Maximum Diameter: 0.29 |
| Base Diameter: 0.29 |
Burial Containers:

B.36- Pithos. No Image Available. No Measurements Available.

Jewelry and Personal Ornamentation:

Tomb 40 (Aissa Langadha 3)

No information is provided about this burial beyond that it is a pithos burial and that it is dated to LMIIIA2 (Kanta 1980: 143).

Burial Containers:

Tomb 41 (Aissa Langadha 4)

The only information provided is that it is a pithos burial and that it was found with a bronze dagger. It is dated to LMIIIA2 (Kanta 1980: 143).

Burial Containers:

Weapons:

Tomb 42 (Alatsomouri)

This tomb was excavated in 1951 and is located on the hill of Alatsomouri. It was a chamber tomb, though the measurements of the tomb are not provided. Three tub
shaped larnakes were found within along with a tripodic table, which Kanta states was for offerings, a squat stirrup jar and a stone bowl. A round pyxis with a lid was also found within which were placed a number of beads and two plane gold rings. Within the chamber a small pit measuring 10 cm deep and 35 cm wide was found. The small pit contained some human bones. The tripodic table was placed above the pit. The Tomb is dated to LMIIIA2-IIIB (Kanta 1980: 143-144).

Burial Containers:

B.39- Tub Larnax. The larnax is painted with wavy lines, scale patterns and circles within a number of different panels. It has four horizontal handles (Kanta 1980: Figure 52.4)

B.40- Tub Larnax. The larnax is painted with a scale pattern, an octopus and papyrus flowers. It has four horizontal handles (Kanta 1980: Figure 56.4).
B.41- Tub Larnax. It is painted with multiple octopi and has four horizontal handles (Kanta 1980: Figure 56.5).

![Image of Tub Larnax]

Jewelry and Personal Ornamentation:

- **J.49- Gold Ring.** No Image Available. No Measurements Available.
- **J.50- Gold Ring.** No Image Available. No Measurements Available.
- **J.51- Beads.** No Image Available. No Measurements Available.

Miscellaneous:

- **M.14- Stone Bowl.** No Image Available. No Measurements Available.
- **M.15- Tripodic Table.** No Image Available. No Measurements Available.

Tomb 43 (at Kateri Koumos)

This is a chamber tomb located near Seager’s Villa. It was excavated in 1963 though the dromos and eastern part of the tomb were disturbed before the excavation. The chamber itself measures 1.50 by 1.25 m and is horseshoe shaped. It contains three larnakes, one chest shapes, one tub shaped and one too broken to tell. Each larnax held a single skeleton. In the chamber excavators also found stirrup jars, cups and a jug. No images of any of the finds or larnakes are included in Kanta’s book. The tomb is dated to **LMIIIA2-IIIB** (Kanta 1980: 144).
Burial Containers:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Image Available</th>
<th>Measurements Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.42</td>
<td>Chest Larnax</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B.43</td>
<td>Tub Larnax</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B.44</td>
<td>Larnax of unknown shape</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Jewelry and Personal Ornamentation:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Image Available</th>
<th>Measurements Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.52</td>
<td>Three Globular Beads</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>J.53</td>
<td>One Amygdloid Steatite Bead</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>J.54</td>
<td>Conical Steatite Bead</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Miscellaneous:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Image Available</th>
<th>Measurements Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.16</td>
<td>Sardium Seal-Stone</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Non-Tomb Objects from the Region:

Episkopi:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Image Available</th>
<th>Measurements Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.283</td>
<td>Globular Stirrup Jar</td>
<td></td>
<td>Height: 0.121</td>
</tr>
<tr>
<td></td>
<td>Cretan. It is painted with arcs, chevrons, thick bands and arrows. It is made of fine clay (Cretan Collection Volume 3-from K Birney; Penn Museum Website).</td>
<td></td>
<td>Max. Diameter: 0.135</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Base Diameter: 0.054</td>
</tr>
</tbody>
</table>
P.284 (MS 4495)-
LMIIIA2-IIIB, Piriform Stirrup Jar. Local vessel. The body of the vessel is painted with wavy lines, concentric arcs, chevrons, and thick bands (Cretan Collection Volume 3 from K Birney; Penn Museum Website).

P.285 (MS 4496)-
LMIIIA2-IIIB Early, Squat Stirrup Jar. Local vessel. It is made of a fine fabric and decorated with a dark slip. The painted decoration includes wavy lines, concentric arcs, concentric chevrons, and thick bands (Cretan Collection Volume 3 from K Birney; Penn Museum Website).
LMIIIB Tombs - 1330-1190 BCE (based on Smith 2002: 303).

Any tomb or site not described in this section has previously been described in the LMIIIA section. Please refer to their entries above for details on tomb architecture, overall date, and number of occupants.

Mochlos:

Tomb 1 (Tomb A)
For tomb description see LMIIIA entry above.

Pottery:

P.286 (11136)- LMIIIB, Shallow Bowl. Local vessel. It is undecorated (Soles 2008: 135; Smith 2002: 479).

P.287 (11100)- LHIIIB1, Piriform Stirrup Jar. It is imported from the Mainland and is painted with concentric semicircles and rosette flowers (Soles 2008: 135; Smith 2002: 482).

P.288 (11116)- LMIIIB, Squat Stirrup Jar. Local vessel. It is painted with arches, wavy lines, and an isolated whorl shell (Soles 2008: 135; Smith 2002: 482).
P.289 (11137) - LMIIIB, Squat Stirrup Jar. It is imported from Central Crete and is painted with wavy lines, zigzags, nested arcs, and papyrus flowers (Soles 2008: 135; Smith 2002: 482).

Height: 0.13
Max. Diameter: 0.188
Rim Diameter: Broken
Base Diameter: 0.08
Handle Width: 0.015
Handle Depth: 0.01

Tomb 2 (Tomb B):
For tomb description see LMIIIA entry above.

Pottery:

P.290 (9346) - LMIIIB, Squat Stirrup Jar. Local vessel. It is painted with groups of wavy lines, nested arcs, fringed slashes, and a tricurved arch wavy line (Soles 2008: 137; Smith 2005: 488).

Height: 0.108
Max. Diameter: 0.106
Rim Diameter: 0.019
Base Diameter: 0.032
Handle Width: 0.012
Handle Depth: 0.006

P.291 (9344) - LHIIIA2, Squat Stirrup Jar. It is imported from the Mainland and is being put in the LMIIIB section because it is late LHIIIA2. It is painted with alternating thick and thin bands (Soles 2008: 137; Smith 2005: 489).

Height: 0.108
Max. Diameter: 0.136
Rim Diameter: 0.025
Base Diameter: 0.058
Handle Width: 0.01
Handle Depth: 0.006

P.292 (11126) - LMIIIB, Storage/Transport Stirrup Jar. It is imported from Central Crete and is painted with a delineated octopus, and grouped wavy lines (Soles 2008: 137; Smith 2005: 489).

Height: 0.278
Max. Diameter: 0.29
Rim Diameter: Broken
Base Diameter: 0.08
Handle Width: Unspecified
Handle Depth: Unspecified
Tomb 4 (Tomb Delta):

For tomb description see LMIIIA entry above.

Pottery:

P.293 (11119)- LMIIIB, Cylinder-Necked Jug. Local vessel. It is painted with concentric lozenges and thin bands (Soles 2008: 140; Smith 2002: 490).

![Cylinder-Necked Jug](image)

Height: 0.18
Max. Diameter: 0.16
Rim Diameter: 0.082
Base Diameter: 0.066
Handle Width: Unspecified
Handle Depth: Unspecified

P.294 (09381a)- LMIIIB, Basket-Handled Pyxis. Local vessel. It is painted with ladder slashes, parallel slashes, and wavy lines. It is associated with P.42, a flat-walled pyxis lid in the LMIIIA section for Tomb 4 (Soles 2008: 140; Smith 2002: 491).

![Basket-Handled Pyxis](image)

Height: 0.153
Max. Diameter: N/A
Rim Diameter: 0.175
Base Diameter: 0.185
Handle Width: Unspecified
Handle Depth: Unspecified

P.295 (9348)- LMIIIB, Squat Stirrup Jar. It is imported from Chania and is painted with solid semicircles, nested triangles, and u-shaped arcs (Soles 2008: 140; Smith 2002: 492).

![Squat Stirrup Jar](image)

Height: 0.11
Max. Diameter: 0.152
Rim Diameter: 0.027
Base Diameter: 0.053
Handle Width: 0.011
Handle Depth: 0.008

P.296 (9343)- LMIIIB, Squat Stirrup Jar. Local vessel. It is painted with linear dots, and grouped wavy lines (Soles 2008: 140; Smith 2002: 492).

![Squat Stirrup Jar](image)

Height: 0.065
Max. Diameter: 0.088
Rim Diameter: 0.016
Base Diameter: 0.023
Handle Width: 0.009
Handle Depth: 0.006
P.297 (9342)- LMIIB, Squat Stirrup Jar. Local vessel. It is painted with delineated nested arcs and isolate arcs (Soles 2008: 140; Smith 2002: 492).

P.298 (9345)- LMIIB, Squat Stirrup Jar. Local vessel. It is painted with grouped wavy lines, and s-shaped wavy lines (Soles 2008: 140; Smith 2002: 492).

P.299 (11139)- LMIIB-IIIC, Straight-Sided Stirrup Jar. Local vessel. It is painted with thin bands around the body. The spout and handles have been lost (Soles 2008: 140; Smith 2002: 493).

Tomb 11:

For tomb description see LMIIIA entry above.

Pottery:

P.300 (INSTAPEC 989)- LMIIB, Globular Stirrup Jar. Local vessel. It is painted with an FM 18 flower and delineated nested arcs. The spout has broken off (Soles 2008: 149; Smith 2002: 444).
P.301 (9922)- LHIIB, Globular Stirrup Jar. It is imported from the Mainland and is painted with thick bands, concentric semicircles and grouped semicircles. The spout of the vessel has broken off (Soles 2008: 149; Smith 2002: 445).

P.302 (INSTAPEC 1012)- LHIIB1, Piriform Stirrup Jar. It is imported from the Mainland and is painted with an FM 18 flower, simple wavy lines and thick bands (Soles 2008: 149; Smith 2002: 445).

Tomb 13

For tomb description see LMIIIA entry above.

Pottery:

P.303 (INSTAPEC 1070)- LMIIB, Narrow-Necked Jug. Local vessel. It is painted with a linked whorl shell motif and thin bands (Soles 2008: 151; Smith 2002: 452).

P.304 (INSTAPEC 1049)- LHIIB1, Piriform Stirrup Jar. It is imported from the Mainland and is painted with rosette flowers and iris flowers. The spout is missing

Height: 0.112
Max. Diameter: 0.109
Rim Diameter: Broken
Base Diameter: 0.044
Handle Width: 0.01
Handle Depth: 0.005

Height: 0.136
Max. Diameter: 0.106
Rim Diameter: 0.022
Base Diameter: 0.047
Handle Width: 0.01
Handle Depth: 0.007

Height: 0.134
Max. Diameter: 0.127
Rim Diameter: 0.038
Base Diameter: 0.072
Handle Width: Unspecified
Handle Depth: Unspecified

Height: 0.121
Max. Diameter: 0.109
Rim Diameter: Broken
Base Diameter: 0.044
Handle Width: Unspecified
Handle Depth: Unspecified
P.305 (INSTAPEC 1044) - LMIIIIB, Squat Stirrup Jar. Local vessel. It is painted with nested triangles, wavy lines, papyrus flowers and circles. Soles states that because of its positioning in the tomb, it was probably one of the last objects placed there. The spout is missing (Soles 2008: 151; Smith 2002: 454).

P.306 (INSTAPEC 1048) - LMIIIIB, Squat Stirrup Jar. It is imported from Western Crete and is painted with thin bands and rosette flowers. The spout is missing (Soles 2008: 151; Smith 2002: 454).

P.307 (INSTAPEC 2660) - LMIIIIB, Squat Stirrup Jar. Local vessel. It is painted with thick bands and was found in the stomion of the tomb. The rim of the jar is broken (Soles 2008: 151; Smith 2002: 455).
P.308 (INSTAPEC 1051) - LMIIIB, Squat Stirrup Jar. Local vessel. It is painted with dark bands around the body and paneled crosshatching. Like P.337, Soles states that it was probably one of the last objects placed in the tomb. The spout and handles are missing (Soles 2008: 151; Smith 2002: 455).

P.309 (INSTAPEC 1064) - LMIIIB, Squat Stirrup Jar. Local vessel. It is painted with an FM 18 flower and thin, dark bands around the body. The spout is broken (Soles 2008: 151; Smith 2002: 455).

P.310 (INSTAPEC 1073) - LHIIIB, Squat Stirrup Jar. It is imported from the Mainland and is painted. The spout and handles are both broken (Soles 2008: 151; Smith 2002: 455).

P.311 (INSTAPEC 1083) - LMIIIB, Squat Stirrup Jar. Local vessel. It is painted with thin bands, FM 18 flowers, and delineated nested arcs. The rim and handles are broken (Soles 2008: 151; Smith 2002: 455).
P.312 (9924)- LMIIIB, Squat Stirrup Jar. It is imported from Chania and is painted with FM 18 flowers, papyrus flowers, crosshatching and solid semicircles (Soles 2008: 151; Smith 2002: 456).

P.313 (INSTAPEC 1052)- LMIIIB, Storage/Transport Stirrup Jar. Soles states that this is similar to stirrup jars found in the Uluburun shipwreck. He does not specify where the stirrup jar is transported from though. It is painted with dark bands, simple crosshatching, and dots (Soles 2008: 151; Smith 2002: 456).

P.314 (11078)- LMIIIB, Storage/Transport Stirrup Jar. Local vessel. It is painted with ladder slashes, grouped wavy lines, semicircles and dark bands (Soles 2008: 151; Smith 2002: 456).

P.315 (INSTAPEC 1066)- LMIIIB, Straight-Sided Stirrup Jar. Local vessel. It is painted with rather unusual motifs that include large zigzags across the body. There are also grouped wavy lines, nested arcs, and ladder slashes (Soles 2008: 151; Smith 2002: 457).
P.316 (INSTAPEC 1045)- LMIIIB, Straight-Sided Stirrup Jar. Local vessel. It is painted with grouped wav lines and parallel slashes. Soles states that it was found in the dromos and was likely one of the last objects placed in the tomb. The spout is broken (Soles 2008: 151; Smith 2002: 457).

Measurements:
- Height: 0.111
- Max. Diameter: 0.137
- Rim Diameter: Broken
- Base Diameter: 0.122
- Handle Width: 0.012
- Handle Depth: 0.01

P.317 (9926)- LMIIIB, Straight-Sided Stirrup Jar. It is imported from Palaikastro and is painted with dark bands and nested arcs (Soles 2008: 151; Smith 2002: 457).

Measurements:
- Height: 0.065
- Max. Diameter: 0.082
- Rim Diameter: Broken
- Base Diameter: 0.025
- Handle Width: Broken
- Handle Depth: Broken

Tomb 17:

For tomb description see LMIIIA entry above.

Pottery:

P.318 (INSTAPEC 1318)- LMIIIB, Storage/Transport Stirrup Jar. It is imported from Palaikastro and is painted with dark bands around the body (Soles 2008: 151; Smith 2002: 467).

Measurements:
- Height: 0.191
- Max. Diameter: 0.174
- Rim Diameter: Unspecified
- Base Diameter: 0.112
- Handle Width: Unspecified
- Handle Depth: Unspecified
Tomb 29:

For tomb description see LMIIIA entry above.

Pottery:

P.319 (INSTAPEC 1743a)- LMIIIB, Basket-Handled Pyxis. Local vessel. It is painted with thick, dark bands and is associate with lid P.217 in the LMIIIA section of Tomb 29 (Soles 2008: 181; Smith 2002: 478).

- Height: 0.128
- Max. Diameter: N/A
- Rim Diameter: 0.151
- Base Diameter: 0.116
- Handle Width: 0.019
- Handle Depth: 0.01

P.320 (INSTAPEC 1741)- LMIIIB, Squat Stirrup Jar. It is imported from Kalochoraphitis and is painted with ladder slashes, simple zigzags and solid semicircles (Soles 2008: 181; Smith 2002: 478).

- Height: 0.06
- Max. Diameter: 0.079
- Rim Diameter: Unspecified
- Base Diameter: 0.027
- Handle Width: Unspecified
- Handle Depth: Unspecified

P.321 (11069)- LHIIIB1, FS 182 Stirrup Jar. It is imported from the Mainland and is painted with concentric semicircles and nested arcs. The spout is broken and missing (Soles 2008: 181; Smith 2002: 499).

- Height: 0.126
- Max. Diameter: 0.132
- Rim Diameter: Broken
- Base Diameter: 0.072
- Handle Width: 0.012
- Handle Depth: 0.008

P.322 (11065)- LMIIIB, Squat Stirrup Jar. Local vessel. It is painted with nested triangles, nested arcs and thin bands. The spout is broken (Soles 2008: 181; Smith 2002: 499).

- Height: 0.114
- Max. Diameter: 0.148
- Rim Diameter: Broken
- Base Diameter: 0.046
- Handle Width: 0.012
- Handle Depth: 0.008
P.323 (11064)- LMIIIB, Squat Stirrup Jar. Local vessel. It is painted with concentric semicircles, nested arcs, palm flowers and arched wavy lines. The handles are broken off and missing (Soles 2008: 181; Smith 2002: 499).

Height: 0.118
Max. Diameter: 0.148
Rim Diameter: 0.024
Base Diameter: 0.042
Handle Width: Broken
Handle Depth: Broken

Tomb 31:

Tomb 31 is a medium sized chamber tomb with a dromos that measures 1.50 m long and 0.75- 0.80 m wide. It is entirely filled with stones. The chamber itself was damaged and the entrance was missing. It measures 0.82 m by 1.15 m and has a ceiling that is 1.32 m above the floor level. It contained a single burial and dates to LMIIIB according to Smith (Soles 2008: 184; Smith 2002: 304). Smith proposes this date because of a single krater that he identifies as being associated with the tomb. It is by far the largest krater in the cemetery. Soles does not mention this krater but instead includes 5 other LMIIIA vessels that Smith does not identify at all in his gazetteer. Neither scholar addresses this apparent discrepancy but because this thesis is using Smith’s chronology, I will use Smith’s more conservative description of this small tomb assemblage.
Pottery:

P.324 (11079)- LMIIIB, Amphoroid Krater. Unconfirmed location. It is painted with grouped wavy lines, parallel slashes and thick, dark bands. It is a very large vessel (Soles 2008: 183; Smith 2002: 478).

Height: 0.403	Max. Diameter: 0.345	
Rim Diameter: 0.262	Base Diameter: 0.109	
Handle Width:	Handle Depth:	Unspecified

Burial Containers:

B.45 (IIC.29)- Pithos. Decorated. No Image Available. Length: 0.8 m

Myrsini Aspropilia LMIIIIB:
This cemetery is described above in the LMIII A section.

Tomb 32 (Tomb A)
For tomb description see LMIII A entry above.

Pottery:

P.325 (3510)- LMIII B-IIC, Globular Stirrup Jar. Cretan. It is painted with nested triangles (Smith 2002: 507).

Height: 0.129	Max. Diameter: 0.116
Rim Diameter: 0.023	Base Diameter: 0.042
Handle Width: 0.013	Handle Depth: 0.008

P.326 (AN 1958)- LMIIIB early, Spouted Cup. Cretan. It is painted with simple wavy lines (Smith 2002: 511).

Height: 0.083	Max. Diameter: N/A
Rim Diameter: 0.103	Base Diameter: 0.036
Handle Width: 0.013	Handle Depth: 0.008
Tomb 33 (Tomb B)

For tomb description see LMIIIA entry above.

Pottery:

P.327 (AN 1894)- LMIIIB-IIIC, Tankard Cup. Cretan. It is painted though Smith doesn’t specify the motifs used and the picture isn’t clear enough to tell (Smith 2002: 514).

P.328 (3501)- LMIIIB, Globular Stirrup Jar. Cretan. It is painted with concentric semicircles, linear dots and parallel slashes (Smith 2002: 519).

Tomb 44 (Tomb Gamma)

Tomb 44 is the only pit tomb in the Myrsini Aspropilia cemetry. It contained a single burial and is dated to the LMIIIB and LMIIIC periods (Smith 2002: 158, 304).

Pottery:

P.329 (3517)- LHIIIB, Globular Stirrup Jar. It is imported from the Mainland and is painted with FM 18 flowers, banded dots and parallel slashes (Smith 2002: 527).

P.331 (3520)-LMIIIB-IIIC, Rounded Handless Cup. Cretan. It is dipped (Smith 2002: 527).

P.332 (3522)-LMIIIB-IIIC, Rounded Handless Cup. Cretan. It is dipped (Smith 2002: 527).

P.334 (3521)-LMIIIB-IIIC, Rounded Handless Cup. Cretan. It is dipped (Smith 2002: 528).

P.335 (AN 1986)-LMIIIB late, Globular Stirrup Jar. Cretan. It is painted with nested arcs and s-shaped wavy lines (Smith 2002: 528).
Burial Containers:

Tomb 34 (Tomb Delta)

For tomb description see LMIIIA entry above.

Pottery:

P.336 (AN 1880 bottom)- LMIIIB, Thymiaterion Base. Cretan. It is painted with simple bands (Smith 2002: 520).

- Height: 0.039
- Max. Diameter: N/A
- Rim Diameter: 0.136
- Base Diameter: 0.122
- Handle Width: N/A
- Handle Depth: N/A

P.337 (AN 1880 top)- LMIIIB, Thymiaterion Cover. Cretan. It is painted though the picture isn’t clear enough to show detail (Smith 2002: 521).

- Height: 0.099
- Max. Diameter: N/A
- Rim Diameter: 0.04
- Base Diameter: 0.102
- Handle Width: N/A
- Handle Depth: N/A

P.338 (AN 1881)- LMIIIB-IIIC, Globular Stirrup Jar. Cretan. It is painted with ladder slashes, nested arcs and parallel slashes (Smith 2002: 523).

- Height: 0.097
- Max. Diameter: 0.092
- Rim Diameter: Broken
- Base Diameter: 0.027
- Handle Width: 0.012
- Handle Depth: 0.006
Tomb 35 (Tomb E)

For tomb description see LMIIIA entry above.

Pottery:

P.339 (AN 1928)-
LMIIIB late, Squat Stirrup Jar. Cretan. It is painted with ladder slashes, nested arcs and fringed slashes (Smith 2002: 525).

- Height: 0.054
- Max. Diameter: 0.062
- Rim Diameter: Broken
- Base Diameter: 0.021
- Handle Width: 0.08
- Handle Depth: 0.07

P.340 (AN 1923)-
LMIIIB late, Globular Stirrup Jar. Cretan. It is painted with ladder slashes, hatched leaves, crosshatched circles and fringed slashes (Smith 2002: 525).

- Height: 0.089
- Max. Diameter: 0.09
- Rim Diameter: 0.02
- Base Diameter: 0.024
- Handle Width: 0.009
- Handle Depth: 0.006

Tomb 36 (Tomb H)

For tomb description see LMIIIA entry above.

Pottery:

P.341 (AN 1918)-
LMIIIB early, Miniature Jug. Cretan. It is painted with nested arcs, simple dots and ladder slashes (Smith 2002: 530).

- Height: 0.117
- Max. Diameter: 0.111
- Rim Diameter: N/A
- Base Diameter: 0.044
- Handle Width: 0.012
- Handle Depth: 0.007
Tomb 45 (Tomb Theta)

Tomb 45 is a chamber tomb that had a built stomion with a wall blocking it. It has a relatively short period of use and is dated to the LMIIIIB period. It contained a single burial (Smith 2002: 160, 304).

Pottery:

P.342 (3527)-LMIIIIB, Miscellaneous Object. Cretan. It is undecorated. The picture is very unclear so it is difficult to tell what this is (Smith 2002: 541).

- Height: 0.061
- Max. Diameter: 0.276
- Rim Diameter: N/A
- Base Diameter: 0.162
- Handle Width: N/A
- Handle Depth: N/A

P.343 (3523)-LMIIIIB, Trefoil-Mouthed Jug. Cretan. It is dipped (Smith 2002: 541).

- Height: 0.15
- Max. Diameter: 0.115
- Rim Diameter: N/A
- Base Diameter: 0.05
- Handle Width: 0.018
- Handle Depth: 0.011

P.344 (AN 1998)-LMIIIIB, Globular Thelastron. Cretan. It is painted though Smith doesn’t specify what motifs are used (Smith 2002: 542).

- Height: 0.085
- Max. Diameter: 0.082
- Rim Diameter: 0.054
- Base Diameter: 0.038
- Handle Width: 0.011
- Handle Depth: 0.009

P.345 (3526)-LMIIIIB, Miniature Jug. Cretan. It is dipped (Smith 2002: 542).

- Height: 0.039
- Max. Diameter: 0.037
- Rim Diameter: N/A
- Base Diameter: 0.018
- Handle Width: 0.006
- Handle Depth: 0.005
P.346 (3525)- LMIIIB, Miniature Jug. Cretan. It is dipped (Smith 2002: 542).

P.347 (3528)- LMIIIB, Globular Stirrup Jar. Cretan. It is painted with u-shaped arcs (Smith 2002: 542).

Burial Containers:

Jewelry and Personal Ornamentation:

Tomb 46 (Tomb IA)

Tomb 46 is a chamber tomb with a stomion that is blocked by a thick wall. It was disturbed before excavation and contained a single burial. Because it was disturbed it is unclear if all of the pottery assigned to it is actually from the tomb. These disputed vessels are marked. The tomb is dated from LMIIIB to LMIIIC (Smith 2002: 160, 304). There is, however, not associated pottery from the LMIIIC period. It is unclear how Smith determined this period of use.
Pottery:

P.348 (AN 2010)-LMIIIB-IIIC, Pulled-Rim Bowl. Cretan. It is dipped (Smith 2002: 532).

- Height: 0.072
- Max. Diameter: N/A
- Rim Diameter: 0.118
- Base Diameter: 0.037
- Handle Width: N/A
- Handle Depth: N/A

P.349 (AN 2006)-LHIIIB1, FS 182 Stirrup Jar. It is imported from the Mainland and is painted with FM 18 flowers and banded dots (Smith 2002: 532).

- Height: 0.109
- Max. Diameter: 0.117
- Rim Diameter: 0.023
- Base Diameter: 0.059
- Handle Width: 0.011
- Handle Depth: 0.006

P.350 (3531)-LMIIIB-IIIC, Narrow-Necked Jug. Cretan. It is undecorated (Smith 2002: 532).

- Height: 0.193
- Max. Diameter: 0.133
- Rim Diameter: 0.053
- Base Diameter: 0.065
- Handle Width: 0.02
- Handle Depth: 0.013

P.351 (3536)-LMIIIB-IIIC, Conical Cup. Cretan. It is undecorated (Smith 2002: 533).

- Height: 0.044
- Max. Diameter: N/A
- Rim Diameter: 0.103
- Base Diameter: 0.041
- Handle Width: N/A
- Handle Depth: N/A

P.352 (3540)-LMIIIB-IIIC, Conical Cup. Cretan. It is undecorated (Smith 2002: 533).

- Height: 0.045
- Max. Diameter: N/A
- Rim Diameter: 0.1
- Base Diameter: 0.038
- Handle Width: N/A
- Handle Depth: N/A
<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.353</td>
<td>LMIIIB-IIIC, Collar-Necked Jug</td>
<td>Cretan. It is dipped (Smith 2002: 533)</td>
<td>Height: Unspecified Max. Diameter: 0.152 Rim Diameter: N/A Base Diameter: 0.075 Handle Width: 0.02 Handle Depth: Unspecified</td>
</tr>
<tr>
<td>P.354</td>
<td>LMIIIB-IIIIC, Pulled-Rim Bowl</td>
<td>Cretan. It is dipped (Smith 2002: 354)</td>
<td>Height: 0.098 Max. Diameter: N/A Rim Diameter: 0.16 Base Diameter: 0.055 Handle Width: N/A Handle Depth: N/A</td>
</tr>
<tr>
<td>P.355</td>
<td>LMIIIB-IIIIC, Conical Cup</td>
<td>Cretan. It is undecorated (Smith 2002: 354).</td>
<td>Height: 0.044 Max. Diameter: N/A Rim Diameter: 0.1 Base Diameter: 0.037 Handle Width: N/A Handle Depth: N/A</td>
</tr>
<tr>
<td>P.356</td>
<td>LMIIIB-IIIIC, Trefoil-Mouthed Jug</td>
<td>Cretan. It is undecorated (Smith 2002: 535).</td>
<td>Height: 0.183 Max. Diameter: 0.132 Rim Diameter: N/A Base Diameter: 0.07 Handle Width: 0.021 Handle Depth: 0.011</td>
</tr>
<tr>
<td>P.357</td>
<td>LMIIIB-IIIIC, Conical Cup</td>
<td>Cretan. It is undecorated. This cup is probably from Tomb IA, but it is unclear (Smith 2002: 535).</td>
<td>Height: 0.043 Max. Diameter: N/A Rim Diameter: 0.1 Base Diameter: 0.039 Handle Width: N/A Handle Depth: N/A</td>
</tr>
</tbody>
</table>
P.358 (3541b)- LMIIIB-IIIC, Conical Cup. Cretan. It is undecorated. This cup is probably from Tomb IA, but it is unclear. It is very similar in size to P.359 below (Smith 2002: 535).

P.359 (3541c)- LMIIIB-IIIC, Conical Cup. Cretan. It is undecorated. This cup is probably from Tomb IA, but it is unclear. It is very similar in size to P.357 and P.358 above (Smith 2002: 535).

Burial Containers:

Miscellaneous:

M.17- triton shell No Image Available. No Measurements Available.

Tomb 37 (Tomb IB)

For tomb description see LMIIIA entry above.

Pottery:

P.360 (AN 1965)- LMIIIB, Globular Stirrup Jar. Cretan. It is painted with crosshatched lozenges and u-shaped arcs (Smith 2002: 538).
P.361 (AN 1978) -
LMIIB-IIIC, Globular Thelastron. Cretan. It is painted with ladder slashes (Smith 2002: 538).

Height: 0.075
Max. Diameter: 0.085
Rim Diameter: 0.051
Base Diameter: 0.035
Handle Width: 0.007
Handle Depth: 0.007

P.362 (AN 1974) -
LMIIB, Squat Stirrup Jar. Cretan. It is painted with grouped wavy lines, parallel slashes and nested chevrons (Smith 2002: 537).

Height: 0.09
Max. Diameter: 0.103
Rim Diameter: 0.028
Base Diameter: 0.041
Handle Width: 0.01
Handle Depth: 0.005

Pakhyammos:

For area description see LMIIA entry above.

Tomb 47 (Rock Shelter at Alatsomouri)

Two tub larnakes, a plain amphora, eight stirrup jars and three miniature jars were found in a rock shelter at Alatsomouri. The larnakes are both dated to LMIIB. No measurements are provided for the rock shelter nor is the number of occupants mentioned (Kanta 1980: 143).

Pottery:

P.363 (MS 4166) -
LMIIB, Miniature Stirrup Jar. This vessel is similar to others from Crete. The motifs are similar to those from Palaikastro. It is painted with a dark slip and decorated with ladder motifs, concentric arcs, crosshatching and

Height: 0.062
Max. Diameter: 0.066
Base Diameter: 0.025
thin and thick bands around the body (Cretan Collection Volume 3 2017).

Burial Containers:

B.49 (Heraklion Museum 3689)-LMIIIB, Tub Larnax. Imported from Episkopi. It is painted with a dark slip. One side shows a cow, a calf and a bull and the other shows a large octopus. Kanta states that it was the product of an Episkopi workshop (Kanta 1980: Figure 56.1 and 56.2).

B.50 – LMIIIB, Tub Larnax. No Image Available. No Measurements Available.

Tomb 48 (Rock Shelter 2 at Alatsomouri)

This is another rock shelter containing a larnax found at Alatsomouri. The larnax was tub shaped and had a lid on which offerings were placed. The tomb contained 21 vases in total. Underneath the larnax was a small pit measuring 80 cm wide and 30 cm deep. In it were six skulls. The larnax is dated to **LMIIIB** (Kanta 1980: 143).
Pottery:

P.364 (MS 4146)-LMIIIB, Squat Stirrup Jar. Local vessel. It is painted with a dark slip. It has wavy lines, crosshatching, a chain of lozenges and thick bands (Cretan Collection Volume 3 2017).

- Height: 0.104
- Max. Diameter: 0.16
- Base Diameter: 0.08

Burial Containers:

B.51 (Heraklion Museum 7401)-LMIIIB, Tub Shaped Larnax with Lid. Local. The lid is not pictured. It is painted a large octopus (Kanta 1980: Figure 55.9).

Gournia:

In the earlier neopalatial period, Gournia was home to a thriving palatial center. It has a large LMII cemetery but only a few LMIII burials, all of which are mentioned here. Gournia, like Pakhyammos, is located on the coast of the Mirabello Bay. It is only about 1 km away from the Pakhyammos area.

Tomb 49 (Stou Takhir Cave)

Fragments of a larnax with an octopus and checkerboard patterning on it and a miniature stirrup jar were found in a cave near the settlement of Gournia. Kanta states
that the larnax appears to be **LMIIB-LMIIIC** in date. No images of the larnax or the stirrup jar are listed (Kanta 1980: 140).

Burial Containers:

Tomb 50 (In Gournia LMI House)

Fragments of a larnax with octopus tentacles on it were found in a destroyed LMI Gournia house. A double pyxis and a figure of a pregnant woman were also found. Kanta states that the pyxis can be dated to early **LMIIIB** (Kanta 1980: 140).

Burial Containers:

Miscellaneous:

M.18- Figure of a pregnant woman. No Image Available. No Measurements Available.

Non-Tomb Objects from the Region:

Episkopi

P.365 (MS 4491)- LMIIB (or LHIIIB), Globular Stirrup Jar. The vessel is either imported from the Mainland or from Central Crete. It is made of a fine fabric and is painted with an orange dark slip. It is decorated with both thin and thick bands.
around the body (Cretan Collection Volume 3 2017).

P.366 (MS 4492)- LMIIIB, Globular Stirrup Jar. Local vessel. The base of the jar is convex so it is possible that a ring base broke off. It is painted with a dark slip and decorated with concentric chevrons, pendant spirals, and triangles. It also has thick bands around the body (Cretan Collection Volume 3 2017).

P.367 (MS 4497)- Possibly LMIIIB, Squat Stirrup Jar. Local vessel. It is made of a fine fabric and is painted with a dark slip. It is decorated with wavy lines, concentric arcs, disconnected shells, and both thick and thin bands (Cretan Collection Volume 3 2017).

P.368 (4498)- LMIIIB, Squat Stirrup Jar. Most likely local vessel. It is made of a fine fabric and is painted with a dark slip. The motifs include concentric chevrons, parallel arcs, thick wavy lines and both thick and thin bands around the body.
P.369 (MS 4499)-
LMIIIB-IIIC, Amphora.
Probably a local vessel.
It is painted with a pale slip and made of a fine fabric. The motifs are painted with a dark slip and include a stylized palm motif, a central ladder, concentric arcs and both thin and thick bands (Cretan Collection Volume 3 2017).

LMIIIC Tombs (1190-1070 BCE) (based on Smith 2002: 303).

Any tomb not described in this section has previously been described in the LMIIIA or LMIIIB sections. Please refer to their entries above for details on tomb architecture, overall date, and number of occupants.

Myrsini
For site description see LMIIIA entry above.

Tomb 32 (Tomb A)
For tomb description see LMIIIA entry above.

Pottery:

P.370 (AN 1957)-
LMIIIC, Deep Bowl.
Cretan. It is painted although the decorative motifs are not specified by Smith (Smith 2002: 508).
P.371 (AN 1940) - LMIIIC, Globular Stirrup Jar. Cretan. It is painted with an octopus, zigzags, grouped wavy lines, parallel slashes, fringed slashes, linear dots, concentric semicircles and papyrus flowers (Smith 2002: 512).

Tomb 33 (Tomb B):

For tomb description see LMIIIA entry above.

Pottery:

P.372 (AN 1893) - LMIIIC, Rim-Handled Kalathos. Cretan. It is painted with simple leaves, grouped wavy lines, linear dots and parallel slashes (Smith 2002: 516).

P.373 (AN 1904) - LMIIIC early, Globular Stirrup Jar. Cretan. It is painted with an octopus, rosette flowers, curving ladder slashes and crosshatched lozenges (Smith 2002: 516).

P.374 (AN 1906) - LMIIIC, Globular Stirrup Jar. Cretan. It is painted with rosette flowers, various types of slashes, concentric semicircles, crosshatched triangles and solid semicircles (Smith 2002: 517).
P.375 (AN 1905)-LMIIIC early, Globular Stirrup Jar. Cretan. It is painted with concentric semicircles, linear dots and ladder slashes (Smith 2002: 517).

P.376 (AN 1908)-LMIIIC, Storage/Transport Stirrup Jar. Cretan. It is painted with nested arcs (Smith 2002: 518).

P.377 (AN 1907)-LMIIIC, Globular Stirrup Jar. Cretan. It is painted with an octopus, delineated nested arcs, and both ladder and simple slashes (Smith 2002: 518).

Tomb 44 (Tomb Gamma)

For tomb description see LMIIIB entry above.

Pottery:

P.378 (03516)-LMIIIC, Globular Stirrup Jar. Cretan. It is painted with arched wavy lines, grouped wavy lines and dark bands (Smith 2002: 528).
P.379 (AN 1984)
LMIIIC, Globular-Conical Stirrup Jar. Cretan. It is painted with arched wavy lines, papyrus flowers and simple foliate (Smith 2002: 529).

Height: 0.222
Max. Diameter: 0.185
Rim Diameter: Unspecified
Base Diameter: 0.073
Handle Width: 0.018
Handle Depth: 0.012

Tomb 51 (Tomb Sigma Tau):

This tomb is a chamber tomb and is dated to LMIIIC. Only one vase was documented by Smith. Both Tomb Sigma Tau and Tomb Zeta, which had no finds, were plundered and very small. It contained a single burial (Smith 2002: 304). Because Tomb Zeta contained no pottery and because I have no information on its architecture, it will not be included in the gazetteer.

Pottery:

P.380 (03542)
LMIIIC, Globular Stirrup Jar. Cretan. It is painted with concentric semicircles, ladder slashes and nested arcs (Smith 2002: 541).

Height: 0.111
Max. Diameter: 0.104
Rim Diameter: 0.024
Base Diameter: 0.045
Handle Width: 0.018
Handle Depth: 0.006

Tomb 52 (Tomb I)

Tomb 52 is dated to LMIIIC and is the only Myrsini tomb that was used exclusively in the LMIIIC period. It is a simple cavity that contained two burials and little else (Smith 2002: 304). This is one of only two tombs that contained more than one burial with the other being Tomb 37 (Tomb IB).
Pottery:

P.381 (AN 2001)-LMIIIC, Rim Handles Kalathos. Cretan. It is painted though the motifs are unspecified. It has a miniature bowl on its rim (Smith 2002: 531).

<table>
<thead>
<tr>
<th>Height: 0.127</th>
<th>Max. Diameter: N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rim Diameter: 0.202</td>
<td>Base Diameter: 0.124</td>
</tr>
<tr>
<td>Handle Width: 0.016</td>
<td>Handle Depth: 0.012</td>
</tr>
</tbody>
</table>

P.382 (03529)-LMIIIC, Globular Stirrup Jar. Cretan. It is painted with nested arcs, parallel and fringed slashes, nested triangles and concentric semicircles (Smith 2002: 532).

<table>
<thead>
<tr>
<th>Height: 0.169</th>
<th>Max. Diameter: 0.166</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rim Diameter: 0.034</td>
<td>Base Diameter: 0.057</td>
</tr>
<tr>
<td>Handle Width: 0.012</td>
<td>Handle Depth: 0.007</td>
</tr>
</tbody>
</table>

Tomb 45 (Tomb IA)

For tomb description see LMIIIB entry above.

Pottery:

P.383 (0537)-LMIIIC, Globular Stirrup Jar. Cretan. It is painted with concentric semicircles, parallel, ladder and fringed slashes, solid semicircles and nested triangles (Smith 2002: 533).

<table>
<thead>
<tr>
<th>Height: 0.143</th>
<th>Max. Diameter: 0.151</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rim Diameter: 0.035</td>
<td>Base Diameter: 0.054</td>
</tr>
<tr>
<td>Handle Width: 0.014</td>
<td>Handle Depth: 0.008</td>
</tr>
</tbody>
</table>

P.384 (AN 2008)-LMIIIC early, Globular Stirrup Jar. Cretan. It is painted with crosshatched triangles, semicircles, wavy lines, papyrus flowers and parallel slashes (Smith 2002: 534).

<table>
<thead>
<tr>
<th>Height: 0.122</th>
<th>Max. Diameter: 0.115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rim Diameter: 0.023</td>
<td>Base Diameter: 0.042</td>
</tr>
<tr>
<td>Handle Width: 0.01</td>
<td>Handle Depth: 0.007</td>
</tr>
</tbody>
</table>
Tomb 37 (Tomb IB)

For tomb description see LMIIIA entry above.

Pottery:

P.385 (AN 1983) - LMIIIC, Globular Stirrup Jar. Cretan. It is painted with concentric semicircles, delineated nested arcs and ladder slashes (Smith 2002: 537).

Vasiliki:

Vasiliki is more inland than either Gournia or Vrokastro, but is still within close proximity to Mirabello Bay. The area was settled as early as the Early Minoan period though there was a significant population drop in the LMI through LMIIIA period. The site has strong evidence of LMIIIC settlements (Tsipopoulou 2003: 86).

Tomb 53 (Kamaraki Tomb):

This is a tholos tomb located near the settlement of Vasiliki that was excavated in 1990. Another tholos tomb was also found nearby and will be discussed below. The chamber is built with irregular stones and has a diameter of about 2.5 m and a height of 1.30 m. The doorway to the chamber has both a lintel and door jams and was
closed off from the dromos by a large slab. The doorway opens to the east (Tsipopoulou 2003: 87). This tholos interestingly contains both typical Minoan and typical Mycenaean characteristics. The earlier Minoan tholoi had no dromoi but they did always open to the east (Eaby 2007: 197). The tomb is dated to LMIIIC and contained seven inhumed individuals. Five of these individuals were adults and two were children (Tsipopoulou 2003: 87). Tsipopoulou provides a far more detailed analysis of the pottery than other sources, often including information about Furrow Marks for the pottery. This information will be included here when available. This tomb was plundered in antiquity but was otherwise intact when excavated (Tsipopoulou 2003: 87).

Pottery:

P.387 (12354a)
LMIIIC, Pyxis. The shape and motifs are comparable to other East Cretan pyxides. This one is probably local. It is painted with brownish orange paint. It has a leaf motif, chess patterning, stemmed spirals, wavy lines and chevrons (FM 50.19, 56.2, 62.32) (Tsipopoulou 2003: 92).

- Height: 0.155
- Base Diameter: 0.15
- Rim Diameter: 0.108
P.388 (12354b) - LMIIIC, Pyxis Lid. Local vessel. It is painted with a yellow slip and has a basket handle. It is decorated with thick bands. It is associate with P.420 above (Tsipopoulou 2003: 92).

See Above.

Height: 0.095
Rim Diameter: 0.136

P.389 (12355) - LMIIIIC, Globular Stirrup Jar. East Cretan. It is painted with a brown paint. The shoulder is decorated with concentric arcs, solid triangles and chevrons. There is a debased octopus at the base of each handle (Tsipopoulou 2003: 93).

Height: 0.132
Max. Diameter: 0.15
Base Diameter: 0.05

P.390 (12359) - LMIIIIC, Globular Stirrup Jar. It is painted with a brown paint. The shoulder is decorated with concentric arcs, solid triangles and chevrons. There is a debased octopus at the base of each handle. It is nearly identical in decoration to P.422 (Tsipopoulou 2003: 93).

Height: 0.126
Max. Diameter: 0.107
Base Diameter: 0.042
P.391 (12363)-
LMIIC-SM, Globular Stirrup Jar. It is painted with a black paint. The shoulder is decorated with fringed arcs, and angles. The handles are decorated with wavy lines and the body with thin bands (Tsipopoulou 2003: 95).

Height: 0.103
Max Diameter: 0.085
Base Diameter: 0.033

P.392 (12346)-
LMIIC late, Amphora. The shape mimics a Mycenaean type but the motifs look similar to those from Palaikastro. It is painted with thick bands and stemmed spirals (Tsipopoulou 2003: 97).

Height: 0.126
Max. Diameter: 0.125
Rim Diameter: 0.054
Base Diameter: 0.061

P.393 (12343)-
LMIIC-SM, Amphoriskoi. East Cretan. It is painted with an orange paint and is decorated with thick bands and a monochrome neck (Tsipopoulou 2003: 97).

Height: 0.136
Max Diameter: 0.123
Rim Diameter: 0.09
Base Diameter: 0.047

P.394 (12350)-
LMIIC, Basin. It is comparable to other East Cretan examples so it is probably local. It is painted with a black paint and is decorated with horizontal bands and vertical bands on the

Height: 0.093
Max. Diameter: N/A
Rim Diameter: 0.252-0.187
Base Diameter: 0.172
upper part of the rim. It is unevenly fired (Tsipopoulou 2003: 98).

P.395 (12348)
LMIIIC early-middle, Kalathos.
Similar to other East Cretan examples. It is painted with a brown paint and is unevenly fired. The interior is decorated with dark bands and the exterior is also decorated with dark bands (Tsipopoulou 2003: 99).

P.396 (12356)
LMIIIC middle, Kalathos. East Cretan. It is painted with a brown paint and decorated with zigzags and a row of 4 metopes that have rhomboids, chevrons, spirals and semicircles in them. In the interior is more or less monochrome (Tsipopoulou 2003: 99).

P.397 (12360)
LMIIIC early, Deep Bowl. Comparable to examples from Palaikastro. It had two handles and is painted with a blackish brown paint. The interior is monochrome. The exterior is painted with stylized papyri.

- **Height**: 0.102
- **Max. Diameter**: N/A
- **Rim Diameter**: 0.225
- **Base Diameter**: 0.139

- **Height**: 0.132
- **Max. Diameter**: N/A
- **Rim Diameter**: 0.254
- **Base Diameter**: 0.15

- **Height**: 0.086
- **Max. Diameter**: N/A
- **Rim Diameter**: 0.125
- **Base Diameter**: 0.039
P.398 (12361)-
LMIIIC early, Deep Bowl. Comparable to examples from Palaikastro. It had two handles and is painted with a blackish brown paint. The interior is monochrome. The exterior is painted with stylized papyri. It is almost identical to P.430 (Tsipopoulou 2003: 101).

Height: 0.112
Max. Diameter: N/A
Rim Diameter: 0.125
Base Diameter: 0.039

P.399 (12347)-
LMIIIC middle, Deep Bowl. It is possibly imported from Palaikastro. It is painted with a black paint and has a monochrome interior. The exterior is decorated with concentric circles (Tsipopoulou 2003: 101).

Height: 0.083
Max. Diameter: N/A
Rim Diameter: 0.121
Base Diameter: 0.042

P.400 (12358)-
LMIIIC-SM, Handless Conical Cup. It is made of a fine clay and is painted with a self slip (Tsipopoulou 2003: 103).

Height: 0.061
Max. Diameter: N/A
Rim Diameter: 0.082
Base Diameter: 0.035
Jewelry and Personal Ornamentation:

J.56 (12464)- LMIIIC, Bronze Fibula. This fibula has no known parallels. It is similar to examples from Argos so is possibly imported. It has two globular beads along its arch (Tsipopoulou 2003: 104).

J.57 (12461)- LMIIIC, Bronze Fibula. It has parallel in the Athens-Kerameikos cemetery, but examples are also seen in Vrokastro. Like J.56, it has two globular beads (Tsipopoulou 2003: 105).

J.58 (12466a)- LMIIIC, Bronze Fibula. It is an arched fibula and is diamond in section. This form is seen all over Crete (Tsipopoulou 2003: 105).

J.59 (12466b)- LMIIIC, Bronze Fibula. It is an arched fibula and only two pieces remain. This form is seen all over Crete (Tsipopoulou 2003: 105).

J.60 (12470)- Possibly LMIIIC, Bronze Pin. It is similar to one from Vrokastro (Tsipopoulou 2003: 106).
J.61 (12465)- LMIIIC, Bronze Crescent-Shaped Pendant. Probably local as no good parallels are known (Tsipopoulou 2003: 107).

- Height: 0.02
- Max. Width: 0.0078
- Thickness: 0.001

J.62 (12473)- LMIIIC, Bronze Crescent-Shaped Pendant. Probably local as no good parallels are known (Tsipopoulou 2003: 107).

- Height: 0.012
- Max. Width: 0.05
- Thickness: 0.0015

J.63 (12463)- LMIIIC, Iron Ring Hoop. East Cretan. It is a very standard iron object (Tsipopoulou 2003: 108).

- Height: 0.007
- Diameter: 0.022
- Thickness: 0.003

J.64 (12467)- LMIIIC, Iron Spiral Ring. Spirals are an unusual form for iron (Tsipopoulou 2003: 108).

- Height: 0.018
- Diameter: 0.017
- Thickness: 0.001

J.65 (12478)- Unspecified Date, Conical Lead Bead. It is unusual for a bead to be made of lead. It may instead be a clothing weight (Tsipopoulou 2003: 108).

- Height: 0.011
- Max. Diameter: 0.0185
- Weight: 14.1 g

J.66 (12476)- Unspecified Date, Globular Stone Bead. It is slightly flattened at its ends (Tsipopoulou 2003: 109).

- Height: 0.013
- Max. Diameter: 0.019

J.67 (12477)- Unspecified Date, Stone Bead. It is a truncated

Tools:

T.20 (12480)- Probably LMIIIC, Unspecified Bimetallic Object. It is made up of a thick iron rectangle and a small bronze attachment that is rounded end. They are fasted together with a rivet (Tsipopoulou 2003: 108).

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron Piece</td>
<td>Height: 0.014</td>
</tr>
<tr>
<td></td>
<td>Width: 0.055</td>
</tr>
<tr>
<td></td>
<td>Thickness: 0.002</td>
</tr>
<tr>
<td>Bronze Piece</td>
<td>Length: 0.027</td>
</tr>
<tr>
<td></td>
<td>Width: 0.006</td>
</tr>
<tr>
<td></td>
<td>Thickness: 0.0015</td>
</tr>
</tbody>
</table>

Tomb 54 (Agios Theodoros):

This is a Beehive or tholos tomb that was excavated by Seager in the early 1900s at Hagios Theodoros. It is no longer extant so all of this information comes from Seager’s 1906 excavation report. He states that the dromos was 0.80 m long and 0.80 m wide and that it had a lintel and door jam. The chamber itself had a diameter of 2 m and a ceiling with a maximum height of 1.80 m. There is not very much information on the finds. Seager identified a single inhumed individual. He states that because of the size of the bone and the presence of a bronze dagger that it must belong to a male. This cannot be confirmed. The tomb was plundered in antiquity and is dated to LMIIIC (Tsipopoulou 2003: 85; Seager 1906: 130).

Pottery:

P.401- LMIII, Stirrup Jar. It has a small foot and is decorated with an octopus. The head is nearly nonexistent and it is given only two

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Image Available</td>
<td>Information not available</td>
</tr>
</tbody>
</table>
tentacles. Seager describes the clay as fine and hard as opposed to the soft clay that he attributes to the Geometric period (Seager 1906: 130).

P.402 - LMIIC, Basket Style Vase (Kalathos?). It is painted with a very degenerated octopus. The body has almost entirely disappeared (Seager 1906: 130).

P.403 - LMIIC, Basket Style Vase (Kalathos?). It is very damaged but its decorative motif can still be discerned. It has a very stylized triton shell (Seager 1906: 130).

P.404 - LMIIC, Cypriote Pilgrim Bottle (Jug?). It is painted with concentric circles (Seager 1906: 131).

Burial Containers:

B.54 - LMIIC, Large Terracotta Larnax. It was decorated with a large stylized octopus (Seager 1906: 130).

Jewelry and Personal Ornamentation:

J.68 - LMIIC, Gold Pendant. It was found inside the larnax and is hollow. It is decorated with a stylized Egyptian lotus bud (Seager 1906: 130).
J.69- LMIIC, Three Carnelian Beads. They were found inside the larnax. These may have been a part of a larger necklace with J.67 as the centerpiece (Seager 1906: 130).

Weapons:

W.4- LMIIC, Small Bronze Dagger. It was found inside the larnax (Seager 1906: 130).

Miscellaneous:

M.19- Dog Bones. Seager states that the inclusion of dog bones implies the importance of the individual interred in the tomb. These will not be given a score in the analysis section as it cannot be verified that the dog was originally interred with the body (Seager 1906: 131).

Vrokastro:

The settlement of Vrokastro is located on a 313m high peak overlooking Mirabello Bay. The site has pottery sherds from as early as the Middle Minoan I period though it seems that there was a break in habitation during the early LM period through to LMIIIA-IIIB. Settlement picks up again in the LMIIIC period and the site remains occupied through the Protogeometric period (Hayden 2002: 2-7). Only the Late Minoan tombs will be discussed here.
Tomb 55 (Corbel Vaulted Tomb 5):

This corbel vaulted tomb is located on the slopes of Kopranes hill. It is dated to very late LMIIIC to Early Protogeometric and is one of two tombs in this gazetteer that show evidence of cremation. This is probably because of its continued use into the Protogeometric period. Hayden does not provide any information about the measurements of the tomb (Hayden 2002: 6). Only the LMIIIC objects will be included in this gazetteer.

Pottery:

P.405 (cat. no. 53)-
LMIIIC late, Swollen Stemmed Kylix. It has two high flung handles and looks rather awkward. It is painted with crosshatching within what appear to be diamond shapes. Its stem is painted with alternating thin and thick bands (Hayden 2002: 6).

P.406 (cat. no. 58)-
LMIIIC late, Bi-conical Stirrup Jar. There is no mention of whether or not the jar is imported. It is decorated with a painted motif of fish kissing. It also has hatched lozenges (Hayden 2002: 6).
P.407 (cat. no. 59)-
LMIIIC, Bi-Conical Stirrup Jar. It has a flat base and a swirl on top of its false spout. It also has painted chevrons and crosshatching. These motifs are unique to the site so the vessel is local (Hayden 2002: 6).

P.408 (cat. no. 146)-
LMIIIC late, Small Flask. It is lentoid in profile and is painted with broad dark circular bands on its body (Hayden 2002: 6).

Information not available.

Tomb 56 (Corbel Vaulted Tomb 6):

Tomb 56 is another corbel vaulted tomb on the slopes of Kopranes hill. Unlike Tomb 55, however, it does not have any evidence of cremation. It is also dated to LMIIIC (Hayden 2002: 7).
Pottery:

P.409 (cat. no. 98)
LMIIIC, Biconical Askos. It is raised on a conical foot and has a long thin spout. It is similar in shape to a stirrup jar and has dark bands around its body. See P.410 for further information (Hayden 2002: 7).

P.410 (cat. no. 97)
LMIIIC, Bird Askos. It is possibly imported from Vronda. The paint and clay used is so similar to that used in P.409 that Hayden suggests they may be from the same workshop. It has three peg legs and a handle on top. Two wings filled with zigzags are painted on the back. Hayden states that this askos and P.409 were probably made specifically for the burial, unlike the kalathos which may have been used in life (Hayden 2002: 7).
P.411 (cat. no. 65)-
LMIIIIC, Kalathos. It has horizontal handles and maybe had dark bands around its body. It is now too worn to tell if this is the case (Hayden 2002: 7).

Tomb 57 (Pithos Burial 1):

Very little information is provided about this burial. Barbara Hayden states that the pithos burial was located in the Chavga ravine and that it contained a stirrup jar dating to LMIIIIC (Hayden 2002: 6).

Pottery:

P.412 (cat. no. 57)-
LMIIIIC, Globular Stirrup Jar. It is similar to other stirrup jars from Central Crete, though it is unclear if this stirrup jar is imported. It is painted with zigzags, slashes, crosshatching and dark bands (Hayden 2002: 6).
Mouliana:

This is a site located to the East of Mochlos. The two tombs were originally excavated in 1903 by Xanthoudides. They are located in a small valley between two hillsides (Eaby 2007: 76).

Tomb 58 (Tomb A):

This tomb is a large tholos tomb that was excavated in 1903. It is located about 5 m away from Tomb B below. It contained both cremations and inhumations and is dated to LMIIIC with possible reuse in the Subminoan/Protogeometric period. The chamber measured 2.4 by 1.8 m and a 0.9 m deep pit was found within the chamber. The tomb also had a dromos, though its measurements are not mentioned. This tholos is, however, different from the two mentioned above. This one has a square base and was built into the ground as opposed to completely above ground (Eaby 2007: 77). The exact number of burials within the tomb is not specified (Eaby 2007: 77). The excavator, Xanthoudides, stated that the tomb had been disturbed by a local before he was able to excavate it, but it’s unclear if any of the tomb’s objects were actually lost because of this (Eaby 2007: 77).
Pottery:

P.413 (P3484) - LMIIIC, Deep Bowl. Local vessel. It has two handles and is painted with a light brown paint. The upper portion is monochromatic and the lower portion has thin bands around it (Privately Shared Mouliana Objects from K. Birney 2016).

Height: 0.1157
Max. Diameter: Unknown
Base Diameter: Unknown
Rim Diameter: 0.148

P.414 (P3483) - LMIIIC, Storage/Transport Stirrup Jar. Local vessel. It is painted with a large degenerated octopus in the middle register (Privately Shared Mouliana Objects from K. Birney 2016).

Height: 0.23
Max. Diameter: Unknown
Base Diameter: Unknown
Rim Diameter: Unknown
P.415 (P3478)- LMIIIC, Squat Stirrup Jar. Local vessel. The body of the vessel is painted with black bands with the thickest band at the carination. The shoulder is painted with three isolate semicircles, filled with horizontal lines and linear dots (Privately Shared Mouliana Objects from K. Birney 2016).

Height: 0.0937
Max. Diameter: 0.1121
Base Diameter: 0.0429
Rim Diameter: 0.0253

P.416 (P3477)- LMIIIC, Squat Stirrup Jar. Local vessel. It is painted with black paint and has bands of varying sizes circling its body. The shoulder is decorated with concentric arcs, crosshatching, concentric triangles and slashes (Privately Shared Mouliana Objects from K. Birney 2016).

Height: 0.13
Max. Diameter: 0.124
Base Diameter: Unknown
Rim Diameter: Unknown
P.417 (P3476)
LMIIC, Globular Stirrup Jar with Conical Base. Local vessel. It is painted with light brown bands of varying sizes around the body and concentric arcs, crosshatching, slashes and triangles on the shoulder (Privately Shared Mouliana Objects from K. Birney 2016).

Height: 0.1955
Max. Diameter: 0.195
Base Diameter: 0.0710
Rim Diameter: 0.034

P.418 (P3475)
LMIIC, Flask. Local vessel. This is a single handled flash that is painted with concentric circles on its body. The center circle contains a plus sign. It has a horizontal zigzag on either side of the seam (Privately Shared Mouliana Objects from K. Birney 2016).

Height: 0.425
Max. Diameter: 0.31
Rim Diameter: 0.0966
P.419 (P3472)
LMIIIC, Bell Krater. Local vessel. It is painted with a light brown, worn paint. It has figural designs. One side shows a centaur hunting what a dear or some other quadruped and the other shows what is presumably a male figure atop a horse. The space under the two handles is filled with concentric arcs (Privately Shared Mouliana Objects from K. Birney 2016).

| Height: 0.414 |
| Max. Diameter: 0.384 |
| Base Diameter: Unknown |
| Rim Diameter: 0.404 |

P.420 (P3473)
LMIIIC (or SM), Cylindrical Pyxis. Local vessel. No Image Available. No information available.

P.421 (P3474)
LMIIIC (or SM), Skyphos. Local vessel. No Image Available. No information available.

P.422 (P3479)
LMIIIC, Stirrup Jar. Local vessel. No Image Available. No information available.

P.423 (P3485)
LMIIIC (or SM), Stirrup Jar. Local vessel. No Image Available. No information available.
Jewelry and Personal Ornamentation:

J.70 (A189)- Gold Bezzled Ring. This is a simple golden band. The band is bezzled. It is very similar to J.71 below (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Width: 0.0021
Max. Thickness: 0.0005
Max. Diameter: 0.0169
Weight: 0.7 g

J.71 (A190)- Gold Bezzled Ring. This is a simple gold band. Like J.70 above, the band is bezzled (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Width: 0.0018
Max. Thickness: 0.0008
Max. Diameter: 0.0165
Weight: 1.1 g

J.72 (A191)- Gold Bezzled Ring. This ring is also bezzled, though it is more complex than J.70 or J.71 (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Length (of bezel): 0.0207
Max. Width (of bezel): 0.0139
Max Width (band): 0.0022
Max. Diameter: 0.0167
Weight: 2.2 g

J.73 (X1003)- Bronze Fibula. This is a Bronze fibula that is almost entirely intact (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Length: 0.32
Max. Width: 0.101
Max. Thickness: 0.0112
Weight: 66 g

J.74 (X1005)- Bronze Bow Fibula. This bronze fibula is more fragmented than J.73. It is also a different shape (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Length: 0.32
Max. Width: 0.0095
Max. Thickness: 0.0115
Weight: 37.8 g
J.75 (X1006)- Bronze Pin. This pin is almost entirely intact (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Diameter: 0.0102
Max. Length: 0.1004
Weight: 12.5 g

J.76 (UNK004)- Bronze Pin. This pin is more fragmented than J.75 (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Length: 0.0671
Max. Width: 0.0034
Max. Thickness: 0.0046
Weight: 5.1 g

Weapons:

W.5 (X1000-2)- Bronze Spear Head. This spear tip is made of a mix of bronze and copper (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Length: 0.1095
Max. Thickness: 0.0036
Max. Diameter: 0.0228
Weight: 92.3 g
W.6 (X997)- Bronze Sword. This bronze sword is cast from a single piece of metal. The rivets on the hilt are made of gold (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Length: 0.582
Max. Thickness: 0.0156
Weight: 704.2 g

W.7 (X999)- Bent Bronze Sword. The sword is made of a mix of copper and bronze. It was bent before being placed in the tomb. Like W.6 above, it is cast from a single piece of metal (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Length: 0.726
Max. Thickness: 0.0064
Weight: 232.1 g
W.8 (998) - Bronze Sword. This is yet another bronze sword cast from a single piece of metal. Very little conservation was done on it (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Length: 0.436
Max. Thickness: 0.0131
Weight: Unspecified

W.9 (UNK001) - Possible Bronze Sword Fragment (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Length: 0.0508
Max. Width: 0.0307
Max. Thickness: 0.0082
Weight: 49.4 g

W.10 (UNK006) - Possible Iron Sword Fragment (Privately Shared Mouliana Objects from K. Birney 2016).

Information Not Available.
W.11 (UNK007)- Possible Iron Sword Fragment (Privately Shared Mouliana Objects from K. Birney 2016).

W.12 (X1001)- Bronze Spear Head. Unlike W.5 above, it is made entirely of bronze (Privately Shared Mouliana Objects from K. Birney 2016).

Miscellaneous:

M.20 (X1002-1)- Bronze Vessel Handles. There are two of them (see below). Both are bow shaped and have bull’s heads at the ends (Privately Shared Mouliana Objects from K. Birney 2016).

M.21 (X1002-2)- Bronze Vessel Handles. There are two of them (see above). Both are bow shaped and have bull’s heads at the ends (Privately Shared Mouliana Objects from K. Birney 2016).

M.22 (X1002a-1)- Bronze Vessel Handles. This is the first half of a set of handles with the other half, M.23, below. The vessel to which it belonged is no longer extant.
M.23 (X1002a-2)- Bronze Vessel Handles. This handle is part of a set with M.22 above (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Length: 0.0092
Max. Thickness: 0.0074
Diameter of Original Vessel: 0.086
Weight: 19.5 g

M.24 (X1004)- Bronze Jug. This jug is larger than most others seen in the gazetteer (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Height: 0.315
Max. Diameter: 0.10
Weight: 2041.2 g

M.25 (X1007)- Small Bronze Plate or Scraper (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Length: 0.057
Max. Width: 0.0428
Max. Thickness: 0.0016
Weight: 17.7 g
M.26 (X1008) - Small Bronze Plate or Scraper (Privately Shared Mouliana Objects from K. Birney 2016).
Max. Length: 0.0588
Max. Width: 0.0362
Max. Thickness: 0.0017
Weight: 17 g

M.27 (X1009) - Small Bronze Plate or Scraper (Privately Shared Mouliana Objects from K. Birney 2016).
Max. Length: 0.0589
Max. Width: 0.0426
Max. Thickness: 0.0032
Weight: 21.1 g

M.28 (UNK002) - Bronze Scraper (Privately Shared Mouliana Objects from K. Birney 2016).
Max. Length: 0.0381
Max. Width: 0.043
Max. Thickness: 0.0027
Weight: 14.8 g

M.29 (UNK003) - Bronze Scraper (Privately Shared Mouliana Objects from K. Birney 2016).
Max. Length: 0.0342
Max. Width: 0.0297
Max. Thickness: 0.0018
Weight: 5.7 g

M.30 (UNK005) - Bronze Scraper (Privately Shared Mouliana Objects from K. Birney 2016).
Max. Length: 0.0226
Max. Width: 0.0457
Max. Thickness: 0.0028
Weight: 6 g
M.31 (O-E 117A) –
Ivory Fragment. This fragment was described as a “bone plate” by the original excavator. It is most likely ivory (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Length: 0.042
Max. Width: 0.0216
Max. Thickness: 0.0035
Max. Diameter: 0.57
Weight: 1.8 g

Tomb 59 (Tomb B):

Tomb B is another tholos tomb and is located directly next to Tomb A. The measurements of the tomb are not specified though Eaby states that it is very similar in size to Tomb A. It contained two inhumations, one in a larnax and the other on the chamber floor. This tomb is slightly earlier than Tomb A above. It is dated to LMIIIB/C-IIIC (Eaby 2007: 77). It is classified as one of the earliest so-called warrior burials in the Aegean (Paschalidis 2009: 28).

Pottery:

P.424 (P3481)-
LMIIIIC, Globular Stirrup Jar. The paint is very worn but it appears that most of the body is decorated with groups of concentric arcs (Privately Shared Mouliana Objects from K. Birney 2016).

Height: 0.203
Max. Diameter: 0.1974
Base Diameter: 0.0793
Rim Diameter: 0.04
Burial Containers:

B.55 (P3529)- LMIIIC, Tub Larnax. The larnax has four horizontal handles. It is painted with the large wavy lines of a degenerated octopus and under the two handles on the long sides there is a checkerboard motif (Privately Shared Mouliana Objects from K. Birney 2016).

Jewelry and Personal Ornamentation:

J.77 (A192)- Gold Ring. It is made of a band with a large diamond shaped piece attached. The diamond shaped portion has filigree and granular decoration (Privately Shared Mouliana Objects from K. Birney 2016).

J.78 (A188)- Gold Death Mask. Death masks are typically Mycenaean. They are not frequently found on Crete (Privately Shared Mouliana Objects from K. Birney 2016).
Weapons:

W.13 (X1010) - Iron Sword. Naue Type II sword. This sword, like the others from Mouliana, is cast from a single piece of metal. It is, however, noteworthy for two reasons. This is the only iron sword in the entire gazetteer and this is a Naue II sword. This will be discussed further in the analysis chapter below (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Length: 0.514
Max. Width: 0.0409
Weight: 364.6 g
W.14 (X1011) - Bronze Sword. This sword, though similar to W.13 above, is not a Naue Type II sword. It is, however, also cast from a single piece of metal (Privately Shared Mouliana Objects from K. Birney 2016).

- Max. Length: 0.41
- Max. Length (with Hilt): 0.444
- Max. Width: 0.0319
- Max. Thickness: 0.0051
- Weight: 211.9 g

W.15 (X1012) - Bronze Spear Head. This spear head is also possibly made of copper (Privately Shared Mouliana Objects from K. Birney 2016).

- Max. Length: 0.184
- Max. Width: 0.035
- Max. Thickness: 0.0102
- Weight: 115 g
W.16 (X1013)- Bronze Spear Head. Like W.17 above, this spear head is also possibly made with copper (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Length: 0.0939
Max. Width: 0.0234
Weight: 57.6 g

W.17 (X1014)- Shield/Disk. The metal of this object is not defined (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Thickness: 0.003
Max. Diameter: 0.195
Weight: 111.8 g

W.18 (X1015)- Shield/Disk. Like W.17 above, the metal of this shield is not specified (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Thickness: 0.0008
Max. Diameter: 0.182
Weight: 117.8 g

W.19 (X1016)- Shield/Disk. The metal of this shield is also undefined (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Thickness: 0.0022
Max. Diameter: 0.183
Weight: 704.2 g

Miscellaneous:

M.32 (O-E 115)- Faience Fragment. This fragment may be a bead. It is not clear (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Thickness: 0.0049
Max. Diameter: 0.043
Inner Diameter: 0.009
Weight: 5.2 g
Unknown Tomb 58 (A) or Tomb 59 (B):

Pottery:

P.425 (P3480)-
LMIIIC, Globular Stirrup Jar. It is elaborately painted in the close style. The false spout has a spiral atop it and the shoulder is filled with concentric arcs, spirals filled in with slashes and thick curving bands. The body is decorated with a number of bands or varying widths (Privately Shared Mouliana Objects from K. Birney 2016).

Height: 0.1962
Max. Diameter: 0.1934
Base Diameter: 0.0821
Rim Diameter: 0.04

Weapons:

W.20 (1000-1)- Bent Bronze Sword. This sword fragment was part of a sword that was bent before being placed in the tomb. It is also interesting because it has an iron spine (Privately Shared Mouliana Objects from K. Birney 2016).

Max. Length: 0.0135
Max. Width: 0.0361
Weight: 111.2 g
Non-Tomb Objects from the Area:

Unknown Site:

P.426 (MS 5873) - LMIIIC early, Globular Stirrup Jar. Provenance unknown. It is made of a fine fabric and is decorated with a dark slip. It has stylized buds and is not in the close style as there is quite a bit of open space. The body of the vessel is decorated with dark bands (Cretan Collection Volume 3 2017).

Kavousi:

P.427 (MS 4501) - LMIIIC, Globular Askos. Probably local. It is made of a fine fabric and decorated with a dark slip. The upper shoulder is too worn to discern any motifs. The handles are decorated with dots and slashes and the body with dark bands (Cretan Collection Volume 3 2017).
Gournia:

P.428 (MS 4140) - No Image Available. Height: 0.119
LMIIIC, Squat Stirrup Jar. Probably local. It is made of a fine fabric and decorated with a dark slip. There is a spiral painted on top of the false spout. The vessel also has concentric circles, stylized buds with fringes on both sides and bands of varying thickness (Cretan Collection Volume 3 2017).

Max. Diameter: 0.15
Base Diameter: 0.053

General LMIII Objects:

A number of objects from the tombs mentioned above could not be dated specifically and so are dated to the LMIII period generally. These objects will be placed below.

Tomb 32 (Tomb A)

P.429 (AN 13511) - Height: 0.046
LMIII, Conical Cup. Cretan. It is undecorated (Smith 2002: 507).

Max Diameter: N/A
Rim Diameter: 0.106
Base Diameter: 0.039
Handle Width: N/A
Handle Depth: N/A

P.430 (AN 1947) - Height: 0.079
LMIII, Pulled-Rim Bowl. Cretan. The entire vessel is dipped (Smith 2002: 507).

Max Diameter: N/A
Rim Diameter: 0.125
Base Diameter: 0.037
Handle Width: N/A
Handle Depth: N/A
P.431 (3512)- LMIII, Conical Cup. Cretan. It is undecorated (Smith 2002: 507).

- Height: 0.047
- Max. Diameter: N/A
- Rim Diameter: 0.114
- Base Diameter: 0.043
- Handle Width: N/A
- Handle Depth: N/A

P.432 (AN 1946)- LMIII, Pulled-Rim Bowl. Cretan. It is dipped (Smith 2002: 508).

- Height: 0.112
- Max. Diameter: N/A
- Rim Diameter: 0.154
- Base Diameter: 0.053
- Handle Width: N/A
- Handle Depth: N/A

P.433 (AN 1945)- LMIII, Pulled-Rim Bowl. Cretan. It is dipped (Smith 2002: 509).

- Height: 0.089
- Max. Diameter: N/A
- Rim Diameter: 0.13
- Base Diameter: 0.042
- Handle Width: N/A
- Handle Depth: N/A

P.434 (AN 1944)- LMIII, Pulled-Rim Bowl. Cretan. It is dipped (Smith 2002: 509).

- Height: 0.106
- Max. Diameter: N/A
- Rim Diameter: 0.157
- Base Diameter: 0.045
- Handle Width: N/A
- Handle Depth: N/A

P.435 (3515)- LMIII, Conical Cup. Cretan. It is undecorated and very broken (Smith 2002: 509).

- Height: 0.043
- Max. Diameter: N/A
- Rim Diameter: 0.12
- Base Diameter: 0.041
- Handle Width: N/A
- Handle Depth: N/A
P.436 (AN 1939)-

P.437 (AN 1948)-

P.438 (No Museum #)-
LMIII, Possibly a Shallow Bowl. Cretan. It is undecorated. It is missing from the museum (Smith 2002: 511).

P.439 (AN 1953)-
LMIII, Conical Cup. Cretan. It is undecorated (Smith 2002: 511).

P.440 (AN 1950)-
LMIII, Rounded Handless Cup. Cretan. It is dipped (Smith 2002: 511).
P.441 (3513)- LMIII, Conical Cup. Cretan. It is undecorated (Smith 2002: 511).

P.442 (AN 1949)- LMIII, Rounded Handless Cup. Cretan. It is dipped (Smith 2002: 513).

Tomb 33 (Tomb B):

P.443 (AN 1897)- LMIII, Pulled-Rim Bowl. Cretan. It is dipped (Smith 2002: 514).

P.444 (3504)- LMIII, Rounded Handless Cup. Cretan. It is dipped (Smith 2002: 519).

P.445 (3506)- LMIII, Rounded Handless Cup. Cretan. It is dipped (Smith 2002: 519).

P.446 (3505)- LMIII, Rounded Handless Cup. Cretan. It is dipped (Smith 2002: 520).
P.447 (3502) - LMIII, Rounded Handless Cup. Cretan. It is dipped (Smith 2002: 520).

P.448 (3503) - LMIII, Conical Cup. Cretan. It is undecorated (Smith 2002: 520).

Tomb 37 (Tomb IB):

P.450 (AN 1966) - LMIII, Globular Stirrup Jar. Cretan. It is painted with ladder slashes, linear dots, and semicircles (Smith 2002: 536).

P.451 (AN 1970) - LMIII, Conical Cup. Cretan. It is dipped (Smith 2002: 536).
P.452 (AN 1964)-
LMIII, Small Amphora. Cretan. It is dipped (Smith 2002: 538).

Height: 0.143
Max. Diameter: 0.124
Rim Diameter: 0.074
Base Diameter: 0.065
Handle Width: 0.02
Handle Depth: 0.01

P.453 (No Museum #)-
LMIII, Conical Cup. Probably Cretan. It is undecorated (Smith 2002: 539).

No Image Available.
Height: Unknown
Max. Diameter: Unknown
Rim Diameter: 0.105
Base Diameter: 0.05
Handle Width: N/A
Handle Depth: N/A

P.454 (AN 1977)-
LMIII, Conical Cup. Cretan. It is dipped (Smith 2002: 540).

Height: 0.042
Max. Diameter: N/A
Rim Diameter: 0.089
Base Diameter: 0.035
Handle Width: N/A
Handle Depth: N/A

P.455 (AN 1980)-
LMIII, Conical Cup. Cretan. It is Undecorated (Smith 2002: 540).

Height: 0.028
Max. Diameter: N/A
Rim Diameter: 0.059
Base Diameter: 0.028
Handle Width: N/A
Handle Depth: N/A

P.456 (AN 1981)-
LMIII, Conical Cup. Cretan. It is undecorated (Smith 2002: 540).

Height: 0.036
Max. Diameter: N/A
Rim Diameter: 0.088
Base Diameter: 0.039
Handle Width: N/A
Handle Depth: N/A
Tourloti (No Known Associated Tomb):

P.457 (MS 4494)- Early LMIII, Globular Stirrup Jar. Cretan. It is painted and has an octopus on its body (Cretan Collection Volume 3-from K Birney; Penn Museum Website).

Height: 0.114
Maximum Diameter: 0.101

Kavousi (No Known Associated Tomb):

T.21 (MS 4762)- LMIII, Bronze Knife Blade. It has a straight cutting edge and is slightly rounded on the other side (Cretan Collection Volume 3-from K Birney; Penn Museum Website).

No Image Available.
Maximum Length: 0.202
Maximum Width: 0.019
Maximum Thickness: 0.003
Chapter 4: Analysis and Discussion

As mentioned above, it has long been thought that Eastern Crete suffered a period of collapse following the abandonment of the palatial centers in LMIIIB. Scholars have argued that Eastern Crete was mostly abandoned (Drews 1993: 29; Nowicki 1999: 146; Haggis 2005: 79; Haggis 2012: 81), that it experienced a drastic economic decline (Hogarth 1901: 145; Seager 1906: 130; Nowicki 1999: 168; haggis 2005: 5), and that it lost contact with international trade connections (Nowicki 1999: 146). After applying my methodology to all of the tombs and their assemblages in the gazetteer, it is clear that this narrative of collapse is far too simple to explain the changes seen in LMIIIC Eastern Crete. I will first discuss total tomb values, then total values for each time period before discussing individual object classes. Object classes will be discussed individually in order to examine assumptions about trade, decline and abandonment. They will also be analyzed in order to look at possible explanations for the changes seen on LMIIIC Eastern Crete including the arrival of a new ethnic group following the c. 1200 BCE Mediterranean collapse.

Total Tomb Values:

Below are four graphs that show the total wealth values of each tomb by period and then the total when divided by number of individuals in the tomb. The tombs highlighted in red were plundered or otherwise disturbed before excavation, meaning that the total value shown is not an accurate representation of the initial wealth value of the tomb (For further details on the nature of the plundering see the tomb descriptions above in the gazetteer). Each tomb is labeled with a T and is in the order in which it appears in the gazetteer. Any objects recovered in a cemetery
Many of the tombs in this thesis were used across multiple periods. Three tombs (T32, T33, T37) were used in all three periods, thirteen were used across LMIIIA and IIB (T1, T2, T4, T11, T13, T17, T29, T32, T33, T34, T35, T36, T37), and two (T44, T45) were used across LMIIIB and IIC. These tombs pose a problem when dividing by number of individuals as it cannot be determined which period the individuals belong to. Some sources did associate certain pottery with certain individuals but they were never specific enough to assign any of the bodies to a time period. Because of these limitations in the published material, each total tomb value was divided by the total number of individuals in the tomb for each period in which it was used. This takes too much value away from tombs that were used across multiple periods, especially in the LMIIIB period as 18 of the 22 available tombs were affected. Because of this, the LMIIIA and IIB periods will be grouped together for ease of analysis. Combining these two periods will eliminate this problem in the thirteen tombs that are used across the LMIIIA and IIB periods. Of the five leftover affected tombs, only one (T37) contained more than a single documented individual, meaning that none of the other tomb values are affected by this process. T37 makes up only 6.25% of the LMIIIC data and only 2% of the LMIIIA and IIB data.

It should also be noted that for all the tombs from Myrsini, Vrokastro, Pakhyammos, Kateri Koumos, Alatsomouri and Gournia, complete reports on the tomb assemblages have not been published. This effect the LMIIIB tombs the most.
For all of these tombs, the value score numbers will not be accurate as the entirety of the assemblages could not be included in the gazetteer.

LMIII A and IIB Value Scores:

Below are two graphs (Figures 4.1 and 4.2) that show the total tomb values and tomb values when divided by number of individuals when LMIII A and IIB are combined into a “pre-collapse” category. These two time periods are combined because, as mentioned above, so little information on the LMIII B tombs has been published and because of the problems that exist in assigning value to reused tombs. There is also the problem of dating non-pottery objects within the tombs. 59% (13) of the LMIII B tombs in the gazetteer were used in both the LMIII A and IIB periods. Pottery can be dated and then assigned to one of the periods, but non-pottery objects cannot. Because of this any jewelry, tools, seals or other non-pottery objects found in these tombs were placed in the LMIII A section and counted towards those tomb values. The remaining 41% (9) tombs are also difficult to analyze as very little is published about their non-pottery objects. Because the main break being examined in this thesis is the at Late Bronze Age collapse of c. 1200 BCE, LMIII A and IIB tombs will be combined in a “pre-collapse” category. As mentioned in the introduction above, the most telling changes happen in the break between LMIII B and IIIC, so combining these two periods will not hurt the analysis. This process will in fact make any differences between pre- and post-collapse Eastern Crete even more clear.
The importance of diving by the number of individuals is immediately evident when the LMIIIA and IIIB tomb values are examined. For example, Tomb 13 from Mochlos appears to be significantly wealthier than any of the other pre-collapse tombs. It, however, contained seven individuals meaning that it is not especially wealthy but instead was reused more frequently than the other tombs.
Even once the tomb values are divided by number of individuals it is clear that significant disparity in wealth exists across cemeteries. The Mochlos Limenaria cemetery is the best example of this, as tombs 1-31 are all from the Mochlos cemetery. That this evidence of disparity in wealth exists within cemeteries is indicative of social stratification. A society with social stratification can be identified in two basic ways: through the presence of “symbols indicative of vertical differentiation…distributed in a pyramidal model of social strata,” meaning that there are very few tombs that contain these symbols and more that do not, and through a recognition of the “amount of energy expended in the mortuary practices” (Pearson 1999: 74). Both of these can be identified within the cemeteries above. The wealthiest tombs in the cemeteries usually contain more vessels related to drinking ritual and, because the value scores are based specifically on energy expenditure, it can be stated that the tombs with higher values required higher amounts of energy expenditure. It does however appear that the general levels of wealth value are similar across cemeteries.

LMIIIC Value Scores:

The LMIIIC tombs show a far greater disparity in wealth values than do the LMIIIA or IIIB periods (Figures 4.3 and 4.4). Tomb 58, the wealthiest tomb in the entire gazetteer, is marked as plundered. This is partially discussed in the gazetteer above, but it is not clear if this is entirely true: the original 1903 excavator, Xanthoudides, states that the tomb objects were removed by a local before he was able to excavate (Eaby 2007: 76). It seems that most, if not all, of the tomb objects were recovered by Xanthoudides as this is by far the wealthiest tomb assemblage in
the LMIIIC period. It will, however, remain in red as it was technically disturbed before excavation took place. This does not change the results beyond not knowing how many individuals were originally in the tomb. Not knowing how many individuals were in the tomb does drastically influence the score though. The original excavation report stated that the tomb contained both inhumed and cremated individuals (Eaby 2007: 76). Because of this I divided the tomb value by two.
individuals. If, however, the tomb contained more than two individuals its wealth per person score would be significantly lower.

Seven of the tombs (T32, T33, T37, T44, T45, T51, T52) are from the Myrsini Aspropilia cemetery. As mentioned above, very little is published on the non-pottery objects from this cemetery. It is, however, worth mentioning that the Myrsini LMIIIC tombs have smaller pottery assemblages than the Tholoi do. This implies that wealth disparity existed in the period even if the non-pottery objects cannot be scored.

Total Value Scores Per Period:

Below are graphs that show the total value score per period. As mentioned above, the low score for LMIIIB is affected by the lack of published data and by the process of dividing by individual. When only pottery is considered, the LMIIIB period still has a far lower total value score than the LMIIIA period does. This lower score for the period should be understood as a combination of an actual decline and a lack of data. To account for the difficulty of dividing the tomb architecture of reused tombs mentioned above, the LMIIIA and IIIB periods are combined in figure 4.6. By comparing Figures 4.5 and 4.6, it is easy to see why prevailing scholarly opinion has been that Eastern Crete experienced a severe collapse in the LMIIIC period. Once the scores are divided by the number of individuals, however, it becomes clear that LMIIIC did not experience a decline in wealth compared to the preceding periods. There are far fewer tombs from the LMIIIC period and so looking at just the assemblages, or just the wealth value would make it appear that the LMIIIC period saw a significant economic decline. When the number of individuals is taken into
consideration, the value scores for all periods more accurately reflect the actual wealth per individual.
LMIIIC without Mouliana:

It is also worth noting that the two very wealthy Mouliana tombs (T58, T59) account for the majority of the wealth value seen in the LMIIIC period. Figure 4.7, below, shows the total value score for the LMIIIC period when the two wealthy Mouliana tholoi are removed. The drop is quite drastic, dropping the value score by 388 value points. The score when Mouliana is included is significantly higher in part because the tomb has far more metal objects than any of the others.

Also, as specified in the graphs above, Tombs 54 and 53 were plundered. The other two non- Mouliana tombs, Tomb 56 and Tomb 55, were not plundered but nothing about the non-pottery objects has been published. This is especially detrimental to the value scores of LMIIIC tombs as most of the value score on the other LMIIIC tombs comes from metal and other non-pottery objects. The source used for Vrokastro (Hayden 2002) also did not include measurements for the tombs
themselves. As mentioned in the Methodology Chapter above, in cases where tomb type was mentioned but no measurements were specified, the tomb received the lowest possible score seen for that tomb’s type. This is done in order to assign the proper value to tombs. Tholos and corbel vaulted tombs make up nearly 43% of the available LMIIIC tombs, so this lack of data has a significant impact on the overall value score of the LMIIIC period. The architecture values for the Vrokastro tombs and the Vrokastro and Vasiliki assemblages could conceivable have had significantly higher value scores than documented in this thesis.

Even though the LMIIIC total value score without Mouliana is decidedly lower than that of the preceding periods, it still contradicts one of the major assumptions about the LMIIIC period on Eastern Crete: namely, that it experienced a collapse and abandonment.

Continuity and Change in the LMIII Period:

This section will look at the changes and similarities in the LMIIIIC period as compared to the LMIIIA and IIIB by object type. As evidenced in the graphs below, the contents of tomb assemblages change drastically in the LMIIIC period. The second part of the section will explore the possible interpretations of these changes and the few remaining similarities to determine what they demonstrate about the LMIIIC period in general.

Luxury and Status Items:

One of the many changes seen in the LMIIIC period is the disappearance of both thymiateria and stone seals. Thymiateria are here classified as “luxury” items because they contained incense. As mentioned in the Methodology Chapter above,
incense are considered a luxury content. Their disappearance could also be an indication of ritual change. The drop begins in the LMIIIB period, and by the LMIIIC period there are no seals and no thymiateria. Connections to Mycenaean Knossos are what provided Eastern Crete with semi-precious stone for the seals (Paschalidis 2009: 27). The collapse of Knossos at the end of the LMIIIA2 period explains the sudden disappearance of seals (Paschalidis 2009: 27). The disappearance of thymiateria has also been well documented. They disappear across all of Crete after the LMIIIB period (Georgiou 1979: 435).

Imported Objects:

The number of imported pottery vessels is highest in the LMIIIB period and by the LMIIIC period drops off almost completely. This drop in imported objects is immediate and allows one to understand the interpretation of LMIIIC East Crete as a sort of cultural backwater.

Figure 4.8

Number of Seals and Thymiateria Per Period

<table>
<thead>
<tr>
<th>Period</th>
<th>Seals</th>
<th>Thymiateria</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMIIIA</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>LMIIIB</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

[Graphic representation of the number of seals and thymiateria per period]
The LMIIIA period, as seen above in Figure 13, has a much smaller percentage of objects imported from the Mainland than the LMIIIB period, seen in Figure 14 below. This increase of imported objects in the LMIIIB period, especially those from the Mainland, is well documented at other LMIIIB East Cretan sites and so is not entirely surprising (Paschalidis 2009: 26). As Paschalidis states in his 2009 paper, “the Mycenaean pottery imported in East Crete is located primarily in levels and contexts that post-date the fall of the Knossos palace, as demonstrated by the settlement and cemetery at nearby Mochlos” (26). The destruction of Knossos and its associated monopolies opened up trade to other Cretan centers, such as Mochlos. The increase in Mainland imported goods can be associated with the development of a more local economy that only became possible with the disappearance of the centralized control of Knossos (Driessen 1990: 128; Paschalidis 2009: 26).

In the LMIIIC period, imports from the Mainland disappear entirely and the percentage of imports from the rest of the island drops considerably. This drop would
seem to suggest that all relationships with the Mainland ceased suddenly, but when this rapid change is put into its historical context it makes more sense. As mentioned in the introduction, around 1200 BCE there was a widespread collapse of Mycenaean palatial centers. It makes sense that in the LMIIIC period, following Mycenaean
collapse, we see a cessation of trade with the Mainland. This lack of imports, however, does not mean a complete end to a relationship with the Mycenaeans.

Drinking Vessels:

One of the most striking differences between the LMIIIA period and the subsequent periods is the content of the ceramic tomb assemblages. The four graphs below show this contrast clearly (Figures 12-15). In the LMIIIA period, 64% of the pottery is either a drinking or serving vessel. Also of note, nearly all of these LMIIIA tombs had at least one drinking cup of some sort, a jug and in most tombs, larger groups of cups were found. When the disturbed tombs and those tombs that contained no pottery are discounted, 81% had at least one cup and one jug. The high frequency of this pairing suggests that drinking ceremonies took place at the tombs (Brogan 2002: 116). Brogan et al., in their 2002 paper, state that this “ceremony might
LMIIIA Percentage of Vessels Associated with Drinking and Serving

- Drinking and Serving Vessels: 36%
- Other Types: 64%

LMIIIB Percentage of Vessels Associated with Drinking and Serving

- Drinking and Serving Vessels: 31%
- Other Types: 69%

LMIIIC Percentage of Vessels Associated with Drinking and Serving

- Drinking and Serving Vessels: 16%
- Other Types: 84%
have taken place at the funeral for the dead individual, or possibly the vessels were meant to provide that individual with the equipment necessary for such a ceremony in the afterlife” (Brogan et al. 2002: 114). Either way the concentration of drinking and serving vessels in the LMIIIA East Cretan tombs points to a ritual activity that took place as a part of the funerary activities.

In the LMIIIB period, this percentage of tombs that contain both a drinking vessel and a jug drops considerably to only 9.5%. Brogan et al., state that drinking ceremonies are well documented in the LMIIIA2 period but this ritual is not as well established in the LMIIIB period.

In the LMIIIC period, only two (T55, T58) of the recorded tombs have both a drinking cup and a jug. The drinking and serving vessel types are also different from those seen in the earlier periods. Bell kraters, deep bowls, metal jugs and skyphoi all appear for the first time in this period. Notably, all of these forms are typically associated with a Mycenaean presence or relationship (Borgna 2004: 250). The metal jug from tomb 58 is especially interesting as the deposit of metal vessels in tombs is strongly associated with Mycenaeans (Borgna 2004: 262). Also, Mycenaean ritual feasting and drinking was not associated with large groups as Minoan drinking rituals were (Borgna 2004: 216). The two tombs that do contain both a drinking cup and serving vessel in the LMIIIC period only ever had one or two cups. This paucity of drinking vessels, especially in contrast to the larger groups of cups usually seen in the LMIIIA tombs, may support Borgna’s interpretation of these tombs as Mycenaean or Mycenaean influenced. From the data in the graphs above, it seems that the performance of ritual drinking dissipates after the LMIIIA period and then sees a rise
in popularity in the LMIIIC period but with new Mycenaean connections. These possible connections will be discussed further in the sections below.

Metals:

Another very noticeable difference between the LMIIIA and IIIB periods and the LMIIIC period is the quantity of metal objects. The graph below shows the total value of metal objects by metal type and by period. It very clearly indicates that the LMIIIC period has more metal objects that are of higher quality (as evidenced by the high value scores) than the preceding periods. The gray portions of the graph show the total value of metal without the Mouliana tombs included. Though the decline without Mouliana is substantial, it should be noted that the other LMIIIC tombs were either plundered or lack published information. If the assemblages of the other tholos tombs were complete, it is likely that the value scores for metals in the LMIIIC period would be even higher.
Although access to all metal types increases with Mouliana included, the most notable change is in access to iron. It is the only metal that increases even when Mouliana is disregarded. Iron only became available in the Mediterranean c. 1200 BCE. The presence of iron on East Crete right around this time indicates that Eastern Crete had connections to this new technology. The provenience of iron objects in the Late Bronze Age is not well established but it has been argued that Cretans were able to access iron through a connection to Cyprus (Muhly et al. 2012: 119). The origin of bronze in the Late Bronze Age is far more well documented. As mentioned in the Methodology Chapter above, lead isotope analysis has revealed that most LM copper ore was also coming from Cyprus (Muhly et al. 2012: 123; Ferrence et al. 2014: 1139). If East Cretans got metal from Cyprus, it would directly contradict the characterization of LMIIIC Eastern Crete as disconnected. This trade relationship with Cyprus would imply that this connection did not cease with the major collapse seen across the Aegean. Imported objects may see a severe drop in the LMIIIC period, but this access to metal suggests that foreign contacts and trade relationships not only continued but remained strong in this period.

It is interesting to note, however, that access to bronze does see a sharp decline when Mouliana is excluded. This is perplexing because, as mentioned above, bronze was imported from Cyprus post c. 1200 BCE collapse. Muhly states that iron was also probably imported from Cyprus so it is interesting that bronze seems to be less accessible while iron becomes newly accessible.

The decline in all metal types except for iron when Mouliana is excluded, could also reflect some of the effects of the Mediterranean wide collapse of c. 1200
BCE. As mentioned in the Methodology chapter above, gold was imported to Eastern Crete. It is unclear where it came from exactly but scholars have proposed that it was imported from Central Europe, Egypt or Northern Greece (Vavelidis 2007: 361). Both the Mainland and Egypt experienced declines and widespread destruction following the collapse of c. 1200 BCE and so it may have been more difficult for East Cretans to access gold.

Jewelry and Weapons:

The graph below (Figure 4.17) shows the percentage of individuals who were buried with either weapons or jewelry. It seems that, in the LMIIIC period, there is a greater emphasis on including jewelry and weapons in burials. Also noteworthy is that this same emphasis does not seem to be present in the Myrsini Aspropilia chamber tombs that are reused in the LMIIIC period. While some of this difference can be explained by the lack of detailed information that has been published concerning the non-pottery objects, it can also be explained by the presence of social stratification. The reused LMIIIC Myrsini Aspropilia chamber tombs contain smaller pottery assemblages than the tholos tombs do. It would make sense that they should also contain fewer metal items.

The types of weapons and jewelry are also significant. In Mouliana tomb 59, object J.78 is a gold death mask. Not only are there no death masks in the LMIIIA and IIIB tombs, but burying the deceased with a death mask is a custom first documented on the Mycenaean Mainland (Despini 2009: 20). Like the new drinking
forms mentioned above (and also found in nearby Tomb 58) the presence of this object suggests a relationship with Mycenaean customs.

The weapon types found in the LMIIIC tombs are also remarkable. Before the LMIIIC period, swords were typically designed for stabbing, rather than for slashing as swords are today. This changed with the introduction of the Naue Type II sword (Drews 1993: 193). The Naue Type II was revolutionary for weaponry in the Late Bronze Age and by the Iron Age it was one of the only sword types in use (Drews 1993: 193; Molloy 2010: 409). Its hilt and blade are cast from the same piece of metal and its blade is long and thin with two parallel edges and a “fully flanged tang” (Molloy 2010: 409). These swords are usually made of bronze, but in tomb 59, there is an iron example of a Naue Type II sword. The other four swords found in the two Mouliana tombs, one of which has been ritually “killed”, are also cast from a single
piece of metal but are not identical to the Naue Type II. Drews, in his 1993 book, states that the Mouliana swords he knew about at the time of publication were clumsy Greek “examples of inexpert experimentation” (1993: 206). I can’t speak to the veracity of this statement but it is clear, even at a glance, that all of the swords are similar in shape to the Naue Type II. Whether the swords in the tombs are clumsy Mainland attempts to make Naue Type II swords or not, it still shows an awareness of this style and a connection to the Near East during this period in which Eastern Crete was supposed to be disconnected from international trade.

Like the death mask and the Mycenaean drinking vessels, the presence of this sword type demonstrates contact with foreign societies. These swords originated from Europe and are introduced to the Near East c. 1200 BCE (Drews 1993: 193-95; Tsipopoulou 2005: 328). The Naue Type II first appears in the Eastern Mediterranean at Mycenae in the LHIIIB period, but other early examples are also found in a tomb at Enkomi, Cyprus and on the island of Kos (Jung, Mehoffer 2008: 123). That they appear in LMIIIC East Cretan tombs implies that East Crete had connections with the Greek Mainland and the Near East, or more specifically with Mycenaeans and the Sea Peoples mentioned in the introduction. Even more exceptional is that these swords appear far more frequently in Eastern Crete than on any other part of the island (Tsipopoulou 2005: 328). The evidence available all suggests that Eastern Crete was not disconnected from the rest of the Mediterranean at the end of the LMIIIB period as long thought. Eastern Crete may even have been more connected than Western and Central Crete in this period.
Tomb Architecture:

Tomb architecture shows both cases of continuity and an introduction of new forms. Six of the LMIIIC tombs are reused chamber tombs from the Myrsini Aspropilia cemetery and one is a pithos burial, but the rest are either tholos or corbel vaulted tombs. There are two types of tholos tombs seen in this gazetteer. Interestingly both of these LMIIIC forms contain a blend of Mycenaean and Minoan elements (Eaby 2007: 203). While building above ground, low doorways and opening east are typical Minoan characteristics, dromoi and building into hillsides are typically Mycenaean (Eaby 2007: 202-203). The first, seen at Mouliana, has a rectangular base and is built into the hillside. The second, seen at Vasiliki, has a roughly circular base, is built above ground and has a door that opens to the east. Both have dromoi. Both types are smaller than those seen either on the Mycenaean mainland or earlier on Crete (Eaby 2007: 197).

Both of these new types of smaller tholos tomb seen in the gazetteer are completely new forms for LM East Crete. Metaxia Tsipopoulou argues that these are not similar enough to the EM- MM tholoi seen on Crete to show continuity (2005: 328). These new, smaller tholoi, she states, show a clear influence from the Mainland (2005: 328). This influence can be seen clearly in the introduction of the Mycenaean architectural forms in both type of tholos.

The reused chamber tombs and the pithos burials, like the LMIIIC tholos tombs, contain mostly stirrup jars and the occasional kalathos and deep bowl. The pottery assemblages, however, are smaller and generally have less value than those in the tholos tombs. The similarity in pottery assemblages is interesting as one would
expect those using completely different tomb types to include different objects in their tomb assemblages. A major difference in assemblages is, however, not seen in the different tomb types. This could suggest evidence for social stratification existing in the LMIIC period. Unfortunately, no information on the metal objects in the reused Myrsini chamber tombs has been published and so only the pottery can be compared here. Nevertheless, even without access to information on the non-pottery objects, the assemblages of lesser value but similar content point to social stratification and the same group using tombs across the region.

Burial Containers:

As shown in the Figure 4.18, fewer individuals were buried in burial containers in the LMIIC period, but Minoan burial containers were still in use even in the new tholos tombs. Larnakes and pithoi are both burial containers with a long Minoan history (Hatzaki 2012: 310). That they are still showing up in these new tholoi, which are likely associated with the Mycenaeans, shows an interesting mingling of these two cultures.

This situation is further complicated when the new use of cremation is considered. Cremation does not appear in LM Eastern Crete until IIIC. It shows up infrequently on Eastern Crete in this period (T58, T59) but its use becomes frequent in the subsequent periods. It is generally accepted that the practice of cremation originated in Asia Minor, especially from the Hittites (Paschalidis 2009: 16). Paschalidis argues that it is seen in East Crete because of the Mirabello Bay port where travelers and merchants from the Near East would have stopped on their way around the Mediterranean (2009: 17). Though intriguing, this interpretation does not
seem likely. Unless Paschalidis is arguing that Near Eastern merchants were physically taking part in funerary ritual, and he is not, it does not make sense that East Cretans would have adopted their specific funerary rites when they had well-established customs of their own. Cremation is, however, seen as early as LMIIIA2 on other parts of the island (Agelarakis 2001: 69). This introduction of cremation from the Near East should be seen as a part of a longer process rather than as evidence for foreign connection during the LMIIIC period.

Closed Vessels and Their Contents:

As seen in the graph below (Figure 4.19), the use and deposit of stirrup jars and pyxides does not decrease in the LMIIIC period. This is important not only because it shows a use of the same forms but also because both of these vessels were
used as containers for high quality products, such as wines, perfumes and unguents that were produced on Eastern Crete.

The frequency of stirrup jars increases significantly in the LMIIC period. The types used do, however, change slightly. Piriform stirrup jars, the most frequent shape in the LMIIIA period, give way to squat stirrup jars in the LMIIIB period and then to globular stirrup jars in LMIIC period. Both pyxides and stirrup jars contained products that were involved in treatment and adornment of the body (Vavouranakis 2007: 155). This suggests that some of the processes for burying the dead remained the same even as tomb architecture and other parts of the tomb assemblages changed.

Also, as mentioned in the Methodology Chapter, there is evidence that the recipe of the perfume in the LMIIC stirrup jars is the same as the recipe used in earlier periods despite the changes in the shapes of stirrup jars (Birney, Koh 2017: 10). These recipes were complex, required high quality craftsmanship and were made using entirely local products (Birney, Koh 2017: 9-10). Not only does the presence of this perfume speak to cultural continuity but it also speaks to the local economy at the time.

![Frequency by Percent of Stirrup Jars and Pyxides per Period](image)
Specialized workshops were still in use and were still producing complex and high quality goods.

Foreign Trade:

The continued presence of foreign trade and connections has been implied in other parts of this chapter. Tholoi, deep bowls, bells krater, iron and Naue Type II swords all show that LMIIIC Eastern Crete was not entirely isolated despite the fact that no obviously imported objects are found in tombs assemblages. There are, however, examples of Cretan objects traded abroad which suggest that these foreign connections went beyond just influence and extended into the trade of physical commodities as well.

An LMIIIC stirrup jar, identical to P.424 from Mouliana Tomb 59, was found in Giapyli, Kos and another in Ialysos, Rhodes (Paschalidis 2009: 10, 13). These finds are interesting as these physical examples of foreign relationships are coming from the Eastern Mediterranean, while the influences on pottery, tomb architecture and funerary ritual are coming from Mainland Greece. Another identical LMIIIC stirrup jar was found at Sedment Tomb 254 in Egypt (Petrie et al. 1924: 24, 26). This LMIIIC vessel is especially interesting as it is the only example of trade with Egypt seen in this thesis.

Conclusions:

The evidence proposed in this analysis chapter challenges most of the assumptions made about Eastern Crete in the LMIII period. It is immediately clear that Eastern Crete saw no major abandonment. The decline in the number of tombs does suggest a decrease in population but this portion of the island was certainly still
inhabited after the Mediterranean collapse. Also, while there is very little evidence of
a connection between East Crete and Central and Western Crete during the LMIIC
period, there is plenty of evidence for international connections. New architectural
types, new access to iron and weaponry types, new pottery forms, and East Cretan
pottery abroad all indicate that foreign trade remained strong following the
Mediterranean collapse of c. 1200 BCE. It is also very possible that these changes can
be in part explained by the arrival of a new ethnic group on Eastern Crete. This
possibility will be discussed in detail below.

There is also no clear evidence of an economic decline. East Cretan perfume
recipes remain as complex as before, elaborate metal jewelry and weaponry are
manufactured on the island and large labor-intensive tombs are built to house the
dead. Further, when the total wealth of each period is divided by the number of
individuals it become abundantly clear that post-collapse LMIIC Eastern Crete saw
no substantial decline, only change
Chapter 5: Conclusion

The widespread collapse of the Mediterranean at the end of the Bronze Age brought significant changes to East Crete, but the nature and cause of these changes has long been understudied. Eastern Crete was lumped in with the decline seen at other Aegean and Mediterranean sites and was not studied in its own right (Pendleberry 1939; Snodgrass 1971; Bennett 1987). The archaeological evidence gathered in this thesis suggests that LMIIIC Eastern Crete did not see a decline and that it may even have been wealthier by some measures than the preceding periods. The methodology used in this thesis to track wealth across the LMIII period allows for a different way to examine these pronounced changes without assumptions of decline affecting the process of analysis.

The importance of this type of analysis can be seen very clearly in Jeffrey Soles’ analysis of the Mochlos Limenaria cemetery. He argues that all of the nicest, imported pottery vessels from the LMIIIA1 period are heirlooms and were not actually made by those using the chamber tombs. This assumption about the wealth of the inhabitants of Mochlos skews his understanding of the total wealth of the later LMIIIA period.

Wealth:

As mentioned in the introduction above, four basic assumptions have been made about Eastern Crete in the LMIII and specifically the LMIIIC period: that it was disconnected from the rest of Crete (Snodgrass 1971: 168; Bennet 1987), that it was disconnected from the Mediterranean (Nowicki 1999: 146), that it experienced an abandonment/ decrease in population (Drews 1993: 29; Nowicki 1999: 146; Haggis
2005: 79; Haggis 2012: 81), and that it experienced an economic decline seen in a lack of trade and general decline in craftsmanship (Hogarth 1901: 145; Seager 1906: 130; Nowicki 1999: 168; Haggis 2005: 5). Most of these are challenged or conclusively disproven through the use of my methodology. The only assumption not disproven is that Crete was disconnected from Central and Western Crete, as there is no clear connection between Eastern Crete and the rest of the island in the LMIIC period.

It is, however, clear that although imported pottery disappears in the LMIIC period, that other forms of foreign trade and influence did not. Crete had access to iron which had to come from abroad and LMIIC East Cretan stirrup jars have been found at sites in the Eastern Mediterranean. It is also evident that Eastern Crete was not abandoned in this period. Tombs built and used in the LMIIC period appear with some frequency on Eastern Crete. Finally, once the methodology was applied to all objects and once each period was divided by number of individuals, there is a distinct lack of economic decline. The wealth per person even increases slightly.

The Mycenoans:

Many aspects of funerary practice changed with the end of the LMIIIA and IIIB periods. Tombs assemblages no longer include huge drinking sets, chamber tombs are no longer being built (though some are reused), new sword types are introduced, iron appears, and imported objects disappear while foreign influence, especially from Mainland Greece, increases dramatically. All of this supports the picture proposed by Metaxia Tsipopoulou in her not yet broadly accepted 2005 paper on the so-called Mycenoans, a term coined at the Ariadne’s Threads conference in
2003 in reference to the heavily Mycenaean influenced population of Crete in the Late Bronze Age and Early Iron Age (Tsipopoulou 2005: 303; Koh 2016). In her argument, Tsipopoulou states that the changes seen in the LMIIIC period are indicative of a new ethnic group, the Mycenaes, coming to Eastern Crete after the collapse of the Mycenaean palaces. This new group of migrants from the Mainland merges with the local Minoans, and forms the Mycenoan ethnicity that we see evidenced in the archaeological record (Tsipopoulou 2005: 328).

According to Jones, ethnic groups can be defined as “culturally ascribed identity groups, which are based on the expression of a real or assumed shared culture and common descent” (1997:84). This definition emphasizes the view of the individuals within the so-called ethnic groups which raises the question of how one tracks the movement and changes of an ethnic group through the archeological record. This problem is well recognized in the field of archaeology. As Smith states in his 2002 comparison of the tombs at Mochlos, Myrsini and Knossos, “ethnicity… is a category of social identity that is difficult to reconstruct from archaeological materials” (2002: 274). This is because ethnicity is self-defined and fluid in nature (Smith 2002: 274). This problem is especially apt for Crete in the Late Bronze Age as the types of Mycenaean influence vary immensely.

Lucy et al. states that “archaeology needs to start identifying people who choose to act or look the same” when attempting to understand and trace ethnicity (Lucy 2005: 108). The study of tombs and their assemblages is exactly the way to do this as “the critical aspect of mortuary ritualism is its archaeological reflection of the ‘actions’ of the living who manipulated rituals” (Emerson, Hargrave 2000: 3).
Through the study of tomb assemblages, one can attempt to understand these changes in ritual. Burial practices show how the buriers of the deceased presented themselves and distinguished themselves from others (Feuer 2011: 512). Therefore, a study of changing tomb assemblages is an excellent data set through which to examine changing ethnicities in the LMIIIC period.

In contrast to Tsipopoulou, Helene Whittaker, in her 2005 paper, argues that evidence on Eastern Crete does not suggest the arrival of a new ethnic group. She states that these changes in LMIIIC East Cretan burial customs show no real connection to the Mycenaean and instead are evidence of a new elite who made use of past ideology to construct and highlight their authority (Whittaker 2005: 341). She argues that the political instability of the Late Bronze Age led to a renewed dependence on warrior ideology and that this is why tholoi are introduced and why there is a greater emphasis on weapons in the LMIIIC tombs. By the LMIIIC period, Mycenaean influence was already well established on other parts of the island and so she states that in this period, Mycenaean architecture should not be viewed as evidence of a new culture group, but rather as evidence of “the common material culture of a[n already] mixed population” (Whittacker 2005: 337).

Whittaker’s argument is persuasive in some senses but I do not think that her argument excludes the possibility of a new wave of Mycenaean from the Mainland coming to Eastern Crete following the Mycenaean palatial collapse. For example, she specifically mentions the tomb assemblage associated with Mouliana Tomb B (T59), stating that the Naue Type II sword (W13), gold funerary mask (J78), and other elite objects should be viewed as “symbols of power or prestige” used by local elites in a
“competition for power on a local or regional level” in the formation of a “new social and political order” (Whittaker 2005: 341). The inclusion of luxury items in the tomb does not necessarily point to only Minoan’s using these elite objects to emphasize status. Warrior graves can certainly be related to changes in social hierarchies but this is not a convincing argument against the arrival of a new wave of migrants. This argument also fails to explain how East Cretans got access to the Naue Type II sword technology. Though it is clear that Mycenaean influence was already seen on Crete during the LMIIIA and IIIB periods (both on East Crete and the rest of the island), the evidence presented in this thesis does not point to this being the sole explanation for the changes seen on LMIIIC Eastern Crete.

As mentioned above, Metaxia Tsipopoulou, in her 2005 paper on the Mycenoans, proposes a more convincing argument for the data in this thesis. She argues that the different types of Mycenaean influence seen in the LMIIIC period can be explained by the arrival of Mycenaean fleeing the Mainland after the collapse of the Mycenaean palaces. Those living in the defensible LMIIIC sites, like at Vrokastro and Vasiliki, originally came from the earlier palatial centers at Gournia and Mochlos. After the Mediterranean wide collapse, inhabitants of the Mainland fled to Eastern Crete and joined these groups. The already strong Mycenaean connection and influence eased this transition (Tsipopoulou 2005: 306). The cultures of these two groups, the local Minoans and the fleeing Mycenaeans, fuse to create what seems to be a new ethnicity on Eastern Crete.

This view is supported by the evidence of cultural continuity from the earlier LMIII periods combined with the newer Mycenaean influences seen in the LMIIIC
period. Mycenaean connections are seen clearly in the LMIIIC funerary rituals with the introduction of Mycenaean pottery and architectural forms. The aspects of the funerary ritual that remain the same, however, are indicative of wider burial practices. For example, stirrup jars containing the same perfume recipes and pyxides are still included in the tomb assemblages and there is still an emphasis on individuality through the use of larnakes and pithoi. The combination of Mycenaean and Minoan elements in tomb architecture and ritual and the remaining presence of Minoan treatment of the body suggests that in LMIIIC Eastern Crete, we see a combination of the two culture groups.

As mentioned above, two tholos types appear for the first time on Crete in the LMIIIC period: the rectangular base tholos and the circular base tholos. Both combine Minoan and Mycenaean elements, but in different ways. The sudden appearance of these two new architectural forms supports the view proposed by Tsipopoulou. If the Mycenaean influence on Eastern Crete were because of a new group of Minoan elite, one would expect to the same language of elitism used within this region. A comparison of this can be seen in the LMIIIA tombs. The wealthiest tombs in terms of pottery (see T15, T13, T33) used in the LMIIIA period all contain large drinking sets, rhyta and occasionally kylikes. The pattern of these vessels showing up in high number in the wealthiest tombs, indicates that there was some level of agreement over how the elites should express their power and wealth in a mortuary setting.

The varying Mycenaean influence seen in the LMIIIC tholoi suggests that rather than a new language of elitism, we are seeing a new Mycenaean group trying to
integrate themselves into Minoan culture. The presence of the Naue Type II sword in the East Cretan tholos at Mouliana also supports this theory. As mentioned above, the sword is associated both with Mycenaean and with the Near East. If the sword type is indeed coming from the Mainland to Eastern Crete, its presence in the Mycenaean influenced tholos tombs would imply direct contact with Mainlanders who had access to the new sword technology when it was introduced c. 1200 BCE.

Also, LMIIIC stirrup jars and evidence for trade relationships are found at places that seem to have connections to the pre-collapse Mycenaean trade relationships. In their 2008 study on Naue Type II swords, Jung and Mehofer state that the first examples of the Naue Type II sword in the Eastern Mediterranean appear at Mycenae in the middle LHIIIB periods and are most likely imports from Italy (Jung, Mehofer 2008:125-6). Other early examples then also appear at Cyprus, Kos and in the Near East (Jung, Mehofer 2008: 121, 123). This indicates a pre-collapse trade relationship with the Greek Mainland.

After the collapse, Eastern Crete clearly has a trade relationship with these areas as well, as seen by the presence of LMIIIC stirrup jars in Egypt and the Cretan connection to Cyprus through access to iron. It seems that the East Cretan post-collapse trade relationships with Cyprus and the Near East could be based on pre-collapse Mycenaean trade relationships. This would support the theory that a new wave of Mycenaean migrants came to Eastern Crete after the c. 1200 BCE collapse and that they are continuing their preexisting trade practices with Cyprus and the Near East from their new position on Eastern Crete.
Though problems in tracing ethnic groups certainly exist, I argue that the clear differences in the types of Mycenaean elements seen in the different periods suggest that in the LMIIC period, the Mycenaean features indicate ethnic change or arrival of a new group and not just peripheral influence. The Mycenaean influence in the LMIIC period is different from what we see in the LMIIA period. For example, both Soles and Smith agree that LMIIA Tomb 15 from the Mochlos Limenaria cemetery has strong connections with the Mycenaeans and that the individual within the tomb is most likely Mycenaean himself. The tomb is extremely wealthy, has a large and highly unusual chest larnax and contains one of the few kylakes seen in the cemetery. Smith states that “the use of kylakes in wealthy burials…can ultimately be connected to Mycenaean funerary practices” (2002: 276). The combination of this Mycenaean form with the local forms of pulled rim bowls and conical cups indicate that an elite Mycenaean was using the symbols of Minoan elite to express social status (Smith 2002: 276).

In the LMIIC period however, the use of Mycenaean forms is entirely different. There are no longer large concentrations of drinking vessels found in the LMIIC tombs and earlier Minoan forms disappear almost entirely. In the LMIIA period, Mycenaean forms are being used in Minoan drinking rituals. In the LMIIC period, we see new drinking vessels that seem to be associated with Mycenaeans. That we see new types of influence supports Metaxia Tsipopoulou’s argument that this is suggestive of a new wave of migrant populations from the Mainland (Tsipopoulou 2005: 306). One of the key aspects of tracing ethnicity through archaeology is tracing changes in ritual practices (Emerson, Hargrave 2000: 3). A
ritual change is seen in the break between the LMIIIA and IIIB periods and the LMIIIC period with the change of pottery assemblages. This new group of migrants brings with it new ways of incorporating their culture with the culture of the Minoans.

It is also worth noting that in her paper on Aegean migrants in the period following the c. 1200 BCE collapse, Leriou uses evidence very similar to that proposed in this thesis to discuss the fact that Mainland migrants relocated to Cyprus after the destruction of the Mycenaean palaces (2011: 251). She notes the flaws in attempting to identify migrant groups through material culture but states that the best way to attempt this is by comparing the material culture from pre- and post-migratory Cyprus (much like this thesis does with pre- and post-collapse tombs) (Leriou 2011: 257). The differences that she states are most indicative of Aegean migrants on Cyprus are the appearance of Mycenaeanizing tombs with dromoi and the appearance of Mainland deep bowls (Leriou 2011: 256). These exact same changes are seen on Eastern Crete. She also states that “the presence of local cultural elements at [Aegean influenced Cyprian sites] has been explained as the material manifestation of the Aegeans’ active interaction with the members of the local communities” (Leriou 2011: 257). That these same changes are seen on another Aegean island post-collapse makes the likelihood of the changes on East Crete being related to a new wave of Mainland migrants even more convincing. This combined with the documented trade connections (for iron and bronze) that continued to exist in the LMIIIC period supports Tsipopoulou’s theory.
Rethinking the Tholos Tombs:

Given this new understanding of the data, it may actually make more sense to value tholoi and chamber tombs equally. If the introduction of tholoi is not viewed as a way for new and wealthier elites to establish their rank, then the introduction must be viewed as a change of custom. Tholoi should not then be given a higher value score than chamber tombs as they represent a change in cultural preference not a change in energy expenditure or wealth. Chamber tombs are used infrequently in the LMIIIC period and nearly all of them are reused tombs, not newly built ones. All the new tombs that are built in the LMIIIC period are tholoi.

It is, however, important to note that the reused chamber tombs of the LMIIIC period have tomb assemblages with value scores much lower than those seen in the tholoi. Interestingly, the assemblages, despite having lower scores, appear to be
similar. As mentioned above, in the LMIIC period, pottery assemblages contain mostly stirrup jars, kalathoi and deep cups. These are all seen in many of the LMIIC Myrsini chamber tombs as well as in the tholoi (see T32, T33, T52). The lower scores of the chamber tomb assemblages suggests that in the LMIIC period, those who had the resources, built new tholos tombs. From this gazetteer, it is clear that chamber tombs were abandoned in favor of tholoi, as no new chamber tombs were built in the LMIIC period.

Above is a graph (Figure 24) that shows the total value score of the time periods when divided by number of individuals when the value score for tholoi is lowered to 85 like that of the chamber tombs. As can be seen, the total value score difference between the LMIIA and IIIB periods and the LMIIC periods is only 41 value score points when this is changed. Though this is only 3 value points different from the previous total value score for the period (Figure 10), it still indicates that when tholoi and chamber tombs are valued equally, the difference between pre- and post-collapse Eastern Crete decreases.

With this new understanding of the changes that took place in the LMIIC period, the value scores for all of the LMIII periods become nearly equal. As mentioned above, much of the information I had on these tombs was incomplete due to lack of published information, so these numbers are subject to change as more research comes out. Based on this methodology and gazetteer, however, it appears that all of the changes between the periods should be attributed to shifting expressions of elite ideals because of an ethnic change and not to any change in wealth in LMIIC Eastern Crete. This analysis indicates that Eastern Crete saw no decline in foreign
connections or craftsmanship and shows conclusively that the region was not abandoned.

Concluding Thoughts:

The results of this analysis also have implications for the understanding of later Cretan history. The lack of decline in the LMIIIC period is especially interesting when one looks at the greater historical context of the region. Most of the settlement evidence for the Subminoan period, the period that follows LMIII and is dated 1070-900 BCE, comes from Eastern Crete (Rehak, Younger 1998: 171). Although this could be attributed to a lack of evidence from the rest of the island, it implies that the continuity seen across the LMIII period continues into the Iron Age.

Archaic inscriptions written in the Greek alphabet but not in Greek, termed Eteocretan, have been found at the East Cretan site of Praisos (Rehak, Younger 1998: 173). These inscriptions have given their name, “Eteocretan,” to the group of people who made them, Cretans living on Eastern Crete in the Archaic period. The Eteocretans first established their identity in the Early Iron Age as an attempt to differentiate themselves from the Mainland Dorians occupying Crete. Tsipopoulou argues that their identity was already formed in the 12th century and that this identity was a combination of Mycenaean and Minoan cultures (Tsipopoulou 2005: 303). This all suggests that Eastern Crete not only did not decline, but was one of the few regions of Crete that maintained its Cretan identity after the end of the Bronze Age.

The presence of a group that considers themselves the original Cretans on Eastern Crete, coupled with the lack of evidence for any sort of decline in the LMIIIC period, points to Eastern Crete being an important site for Minoan cultural continuity.
It is clear that Eastern Crete was an important region following the end of the Bronze Age and so it is important to establish what is happening there. A deeper appreciation for the changes at the end of the Bronze Age can lead to a better understanding of later Cretan history.

The Mediterranean wide collapse at the break between the LMIIIA and IIIB periods and the LMIIIC period has long led scholars to assume that Eastern Crete experienced a collapse. As discussed in the chapters above, this does not appear to be the case when the wealth value of the tomb assemblages for all three periods are compared. The changes present instead appear to be influenced by the creation of a new ethnic group and not by any kind of decline. Mainland Mycenaeans arrive on Crete and create a sort of hybrid ethnicity with Minoan culture that is reflected in the changed tomb assemblages and tomb architecture.

The process of assigning value through a set methodology allows one to track the overall wealth and value of different object classes across periods while taking into account both the evidence for continuity and the evidence for cultural change. The conclusions show that there is no decline in wealth, no lack of international connection and no abandonment in the LMIIIC period. The evidence instead suggests that there is a change in the way wealth is expressed. With the arrival of a new group, the language of the elite changes and this change is reflected in the tomb assemblages.
BIBLIOGRAPHY

Pratt, C. E. (2014). *Critical Commodities: Tracing Greek Trade in Oil and Wine from the Late Bronze Age to the Archaic Period*. UCLA.

Tsipopoulou, M. (2005). ‘Mycenoans’ at the Isthmus of Ierapetra: Some (Preliminary) Thoughts on the Foundation of the (Eteo)Cretan Cultural Identity,
In A.L. D’Agata & J. Moody (Eds.), Ariadne’s Threads: Connection Between Crete and the Greek Mainland in Late Minoan III (LMIIIA2 to LMIIIC) (pp. 303-352). Tripodes 3.

APPENDIX

LMIIIA Object Values by Tomb

Tomb 1 Object Values

<table>
<thead>
<tr>
<th>P.1</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.2</td>
<td>141</td>
</tr>
<tr>
<td>P.3</td>
<td>209</td>
</tr>
<tr>
<td>P.4</td>
<td>120</td>
</tr>
<tr>
<td>P.5</td>
<td>55</td>
</tr>
<tr>
<td>P.6</td>
<td>85</td>
</tr>
<tr>
<td>P.7</td>
<td>19</td>
</tr>
<tr>
<td>P.8</td>
<td>154</td>
</tr>
<tr>
<td>P.9</td>
<td>48</td>
</tr>
<tr>
<td>P.10</td>
<td>73</td>
</tr>
<tr>
<td>P.11</td>
<td>48</td>
</tr>
<tr>
<td>P.12</td>
<td>48</td>
</tr>
<tr>
<td>P.13</td>
<td>48</td>
</tr>
<tr>
<td>P.14</td>
<td>48</td>
</tr>
<tr>
<td>P.15</td>
<td>47</td>
</tr>
<tr>
<td>P.16</td>
<td>54</td>
</tr>
<tr>
<td>P.17</td>
<td>57</td>
</tr>
<tr>
<td>P.18</td>
<td>60</td>
</tr>
<tr>
<td>P.19</td>
<td>171</td>
</tr>
<tr>
<td>P.20</td>
<td>See P.19</td>
</tr>
<tr>
<td>P.21</td>
<td>154</td>
</tr>
<tr>
<td>P.22</td>
<td>57</td>
</tr>
<tr>
<td>B.1</td>
<td>174</td>
</tr>
<tr>
<td>Tomb</td>
<td>567</td>
</tr>
<tr>
<td>Total</td>
<td>2532</td>
</tr>
</tbody>
</table>

Tomb 2 Object Values

<table>
<thead>
<tr>
<th>P.23</th>
<th>189</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.24</td>
<td>145</td>
</tr>
<tr>
<td>P.25</td>
<td>48</td>
</tr>
<tr>
<td>P.26</td>
<td>48</td>
</tr>
<tr>
<td>P.27</td>
<td>53</td>
</tr>
<tr>
<td>P.28</td>
<td>79</td>
</tr>
<tr>
<td>P.29</td>
<td>53</td>
</tr>
<tr>
<td>P.30</td>
<td>53</td>
</tr>
<tr>
<td>P.31</td>
<td>57</td>
</tr>
<tr>
<td>P.32</td>
<td>58</td>
</tr>
<tr>
<td>P.33</td>
<td>55</td>
</tr>
<tr>
<td>P.34</td>
<td>116</td>
</tr>
<tr>
<td>P.35</td>
<td>204</td>
</tr>
<tr>
<td>P.36</td>
<td>93</td>
</tr>
<tr>
<td>P.37</td>
<td>93</td>
</tr>
<tr>
<td>P.38</td>
<td>64</td>
</tr>
<tr>
<td>P.39</td>
<td>69</td>
</tr>
<tr>
<td>P.40</td>
<td>144</td>
</tr>
<tr>
<td>P.41</td>
<td>113</td>
</tr>
<tr>
<td>B.2</td>
<td>186</td>
</tr>
<tr>
<td>Tomb</td>
<td>606</td>
</tr>
<tr>
<td>Total</td>
<td>2526</td>
</tr>
</tbody>
</table>

Tomb 3 Object Values

<table>
<thead>
<tr>
<th>B.3</th>
<th>94</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.1</td>
<td>85</td>
</tr>
<tr>
<td>J.2</td>
<td>150</td>
</tr>
<tr>
<td>J.3</td>
<td>123</td>
</tr>
<tr>
<td>Tomb</td>
<td>446</td>
</tr>
<tr>
<td>Total</td>
<td>898</td>
</tr>
</tbody>
</table>

1 Total tomb values not divided by number of individuals
<table>
<thead>
<tr>
<th>Tomb 4 Object Values</th>
<th>Tomb 7 Object Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.42</td>
<td>52</td>
</tr>
<tr>
<td>P.43</td>
<td>202</td>
</tr>
<tr>
<td>P.44</td>
<td>0</td>
</tr>
<tr>
<td>P.45</td>
<td>181</td>
</tr>
<tr>
<td>P.46</td>
<td>48</td>
</tr>
<tr>
<td>P.47</td>
<td>55</td>
</tr>
<tr>
<td>P.48</td>
<td>123</td>
</tr>
<tr>
<td>B.4</td>
<td>190</td>
</tr>
<tr>
<td>Tomb</td>
<td>490</td>
</tr>
<tr>
<td>Total</td>
<td>1341</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tomb 5 Object Values</th>
<th>Tomb 8 Object Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.49</td>
<td>159</td>
</tr>
<tr>
<td>P.50</td>
<td>72</td>
</tr>
<tr>
<td>P.51</td>
<td>55</td>
</tr>
<tr>
<td>P.52</td>
<td>57</td>
</tr>
<tr>
<td>B.5</td>
<td>120</td>
</tr>
<tr>
<td>Tomb</td>
<td>435</td>
</tr>
<tr>
<td>Total</td>
<td>898</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tomb 6 Object Values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p.53</td>
<td>191</td>
</tr>
<tr>
<td>P.54</td>
<td>48</td>
</tr>
<tr>
<td>P.55</td>
<td>55</td>
</tr>
<tr>
<td>P.56</td>
<td>57</td>
</tr>
<tr>
<td>P.57</td>
<td>53</td>
</tr>
<tr>
<td>P.58</td>
<td>55</td>
</tr>
<tr>
<td>P.59</td>
<td>77</td>
</tr>
<tr>
<td>P.60</td>
<td>62</td>
</tr>
<tr>
<td>P.61</td>
<td>108</td>
</tr>
<tr>
<td>B.6</td>
<td>142</td>
</tr>
<tr>
<td>Tomb</td>
<td>440</td>
</tr>
<tr>
<td>Total</td>
<td>1288</td>
</tr>
</tbody>
</table>
Tomb 9 Object Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.79</td>
<td>55</td>
</tr>
<tr>
<td>P.80</td>
<td>100</td>
</tr>
<tr>
<td>P.81</td>
<td>53</td>
</tr>
<tr>
<td>P.82</td>
<td>48</td>
</tr>
<tr>
<td>P.83</td>
<td>65</td>
</tr>
<tr>
<td>P.84</td>
<td>132</td>
</tr>
<tr>
<td>P.85</td>
<td>102</td>
</tr>
<tr>
<td>P.86</td>
<td>226</td>
</tr>
<tr>
<td>B.9</td>
<td>94</td>
</tr>
<tr>
<td>J.4</td>
<td>121</td>
</tr>
<tr>
<td>J.5</td>
<td>144</td>
</tr>
<tr>
<td>J.6</td>
<td>101</td>
</tr>
<tr>
<td>M.1</td>
<td>224</td>
</tr>
<tr>
<td>M.2</td>
<td>192</td>
</tr>
<tr>
<td>Tomb</td>
<td>485</td>
</tr>
<tr>
<td>Total</td>
<td>2142</td>
</tr>
</tbody>
</table>

Tomb 10 Object Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.87</td>
<td>56</td>
</tr>
<tr>
<td>P.88</td>
<td>74</td>
</tr>
<tr>
<td>P.89</td>
<td>120</td>
</tr>
<tr>
<td>P.90</td>
<td>113</td>
</tr>
<tr>
<td>P.91</td>
<td>123</td>
</tr>
<tr>
<td>P.92</td>
<td>123</td>
</tr>
<tr>
<td>P.93</td>
<td>104</td>
</tr>
<tr>
<td>P.94</td>
<td>187</td>
</tr>
<tr>
<td>B.10</td>
<td>188</td>
</tr>
<tr>
<td>J.7</td>
<td>190</td>
</tr>
<tr>
<td>J.8</td>
<td>150</td>
</tr>
<tr>
<td>J.9</td>
<td>260</td>
</tr>
<tr>
<td>J.10</td>
<td>245</td>
</tr>
<tr>
<td>J.11</td>
<td>218</td>
</tr>
<tr>
<td>T.1</td>
<td>200</td>
</tr>
<tr>
<td>T.2</td>
<td>92</td>
</tr>
<tr>
<td>T.3</td>
<td>83</td>
</tr>
<tr>
<td>M.3</td>
<td>328</td>
</tr>
<tr>
<td>Tomb</td>
<td>556</td>
</tr>
<tr>
<td>Total</td>
<td>3412</td>
</tr>
</tbody>
</table>

Tomb 11 Object Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.95</td>
<td>88</td>
</tr>
<tr>
<td>P.96</td>
<td>113</td>
</tr>
<tr>
<td>P.97</td>
<td>54</td>
</tr>
<tr>
<td>P.98</td>
<td>62</td>
</tr>
<tr>
<td>P.99</td>
<td>73</td>
</tr>
<tr>
<td>P.100</td>
<td>86</td>
</tr>
<tr>
<td>P.101</td>
<td>129</td>
</tr>
<tr>
<td>P.102</td>
<td>149</td>
</tr>
<tr>
<td>B.11</td>
<td>155</td>
</tr>
<tr>
<td>J.12</td>
<td>127</td>
</tr>
<tr>
<td>J.13</td>
<td>121</td>
</tr>
<tr>
<td>J.14</td>
<td>160</td>
</tr>
<tr>
<td>J.15</td>
<td>120</td>
</tr>
<tr>
<td>Tomb</td>
<td>585</td>
</tr>
<tr>
<td>Total</td>
<td>2022</td>
</tr>
</tbody>
</table>
Tomb 12 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.103</td>
<td>102</td>
</tr>
<tr>
<td>P.104</td>
<td>77</td>
</tr>
<tr>
<td>P.105</td>
<td>53</td>
</tr>
<tr>
<td>P.106</td>
<td>58</td>
</tr>
<tr>
<td>P.107</td>
<td>112</td>
</tr>
<tr>
<td>P.108</td>
<td>56</td>
</tr>
<tr>
<td>Tomb</td>
<td>396</td>
</tr>
<tr>
<td>Total</td>
<td>854</td>
</tr>
</tbody>
</table>

Tomb 13 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.109</td>
<td>70</td>
</tr>
<tr>
<td>P.110</td>
<td>105</td>
</tr>
<tr>
<td>P.111</td>
<td>55</td>
</tr>
<tr>
<td>P.112</td>
<td>52</td>
</tr>
<tr>
<td>P.113</td>
<td>55</td>
</tr>
<tr>
<td>P.114</td>
<td>55</td>
</tr>
<tr>
<td>P.115</td>
<td>48</td>
</tr>
<tr>
<td>P.116</td>
<td>48</td>
</tr>
<tr>
<td>P.117</td>
<td>48</td>
</tr>
<tr>
<td>P.118</td>
<td>48</td>
</tr>
<tr>
<td>P.119</td>
<td>48</td>
</tr>
<tr>
<td>P.120</td>
<td>48</td>
</tr>
<tr>
<td>P.121</td>
<td>48</td>
</tr>
<tr>
<td>P.122</td>
<td>48</td>
</tr>
<tr>
<td>P.123</td>
<td>48</td>
</tr>
<tr>
<td>P.124</td>
<td>62</td>
</tr>
<tr>
<td>P.125</td>
<td>58</td>
</tr>
<tr>
<td>P.126</td>
<td>69</td>
</tr>
<tr>
<td>P.127</td>
<td>70</td>
</tr>
<tr>
<td>P.128</td>
<td>65</td>
</tr>
<tr>
<td>P.129</td>
<td>103</td>
</tr>
<tr>
<td>P.130</td>
<td>161</td>
</tr>
<tr>
<td>P.131</td>
<td>161</td>
</tr>
<tr>
<td>P.132</td>
<td>118</td>
</tr>
<tr>
<td>P.133</td>
<td>195</td>
</tr>
<tr>
<td>P.134</td>
<td>110</td>
</tr>
<tr>
<td>P.135</td>
<td>136</td>
</tr>
</tbody>
</table>

Tomb 14 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B.12</td>
<td>163</td>
</tr>
<tr>
<td>B.13</td>
<td>189</td>
</tr>
<tr>
<td>J.16</td>
<td>200</td>
</tr>
<tr>
<td>J.17</td>
<td>111</td>
</tr>
<tr>
<td>J.18</td>
<td>121</td>
</tr>
<tr>
<td>J.19</td>
<td>81</td>
</tr>
<tr>
<td>J.20</td>
<td>155</td>
</tr>
<tr>
<td>J.21</td>
<td>212</td>
</tr>
<tr>
<td>T.4</td>
<td>166</td>
</tr>
<tr>
<td>T.5</td>
<td>167</td>
</tr>
<tr>
<td>T.6</td>
<td>143</td>
</tr>
<tr>
<td>W.1</td>
<td>179</td>
</tr>
<tr>
<td>M.4</td>
<td>268</td>
</tr>
<tr>
<td>M.5</td>
<td>235</td>
</tr>
<tr>
<td>Tomb</td>
<td>822</td>
</tr>
<tr>
<td>Total</td>
<td>5485</td>
</tr>
</tbody>
</table>

Tomb 14 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B.14</td>
<td>112</td>
</tr>
<tr>
<td>Tomb</td>
<td>410</td>
</tr>
<tr>
<td>Total</td>
<td>522</td>
</tr>
</tbody>
</table>
Tomb 15 Object Values

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.137</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>P.138</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>P.139</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>P.140</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>P.141</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>P.142</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>P.143</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>P.144</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>P.145</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>P.146</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>P.147</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>P.148</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>P.149</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>P.150</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>P.151</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>P.152</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>P.153</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>P.154</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>P.155</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>P.156</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>P.157</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>P.158</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>P.159</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>P.160</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>P.161</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>P.162</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>P.163</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>B.15</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Tomb</td>
<td>694</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3083</td>
<td></td>
</tr>
</tbody>
</table>

Tomb 16 Object Values

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.164</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>P.165</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>P.166</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>P.167</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>P.168</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>B.16</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>J.22</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>J.23</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>J.24</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>J.25</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>J.26</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>J.27</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>M.6</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Tomb</td>
<td>528</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2085</td>
<td></td>
</tr>
</tbody>
</table>

Tomb 17 Object Values

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.169</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>P.170</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>P.171</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>P.172</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>P.173</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>P.174</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>B.17</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>J.28</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>T.7</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>T.8</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>T.9</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>T.10</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>T.11</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>T.12</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>M.7</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Tomb</td>
<td>486</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2489</td>
<td></td>
</tr>
</tbody>
</table>
Tomb 18 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B.18</td>
<td>70</td>
</tr>
<tr>
<td>J.29</td>
<td>135</td>
</tr>
<tr>
<td>Tomb</td>
<td>316</td>
</tr>
<tr>
<td>Total</td>
<td>521</td>
</tr>
</tbody>
</table>

Tomb 19 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.175</td>
<td>59</td>
</tr>
<tr>
<td>P.176</td>
<td>56</td>
</tr>
<tr>
<td>P.177</td>
<td>59</td>
</tr>
<tr>
<td>P.178</td>
<td>48</td>
</tr>
<tr>
<td>P.179</td>
<td>111</td>
</tr>
<tr>
<td>P.180</td>
<td>58</td>
</tr>
<tr>
<td>P.181</td>
<td>58</td>
</tr>
<tr>
<td>P.182</td>
<td>95</td>
</tr>
<tr>
<td>P.183</td>
<td>75</td>
</tr>
<tr>
<td>P.184</td>
<td>54</td>
</tr>
<tr>
<td>P.185</td>
<td>63</td>
</tr>
<tr>
<td>P.186</td>
<td>55</td>
</tr>
<tr>
<td>P.187</td>
<td>119</td>
</tr>
<tr>
<td>P.188</td>
<td>120</td>
</tr>
<tr>
<td>P.189</td>
<td>135</td>
</tr>
<tr>
<td>P.190</td>
<td>103</td>
</tr>
<tr>
<td>B.19</td>
<td>109</td>
</tr>
<tr>
<td>B.20</td>
<td>131</td>
</tr>
<tr>
<td>J.30</td>
<td>105</td>
</tr>
<tr>
<td>J.31</td>
<td>133</td>
</tr>
<tr>
<td>J.32</td>
<td>155</td>
</tr>
<tr>
<td>J.33</td>
<td>110</td>
</tr>
<tr>
<td>J.34</td>
<td>155</td>
</tr>
<tr>
<td>T.13</td>
<td>101</td>
</tr>
<tr>
<td>Tomb</td>
<td>591</td>
</tr>
<tr>
<td>Total</td>
<td>1590</td>
</tr>
</tbody>
</table>

Tomb 20 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.191</td>
<td>51</td>
</tr>
<tr>
<td>B.21</td>
<td>94</td>
</tr>
<tr>
<td>Tomb</td>
<td>578</td>
</tr>
<tr>
<td>Total</td>
<td>723</td>
</tr>
</tbody>
</table>

Tomb 21 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.192</td>
<td>56</td>
</tr>
<tr>
<td>P.193</td>
<td>57</td>
</tr>
<tr>
<td>P.194</td>
<td>148</td>
</tr>
<tr>
<td>B.22</td>
<td>94</td>
</tr>
<tr>
<td>T.14</td>
<td>171</td>
</tr>
<tr>
<td>T.15</td>
<td>147</td>
</tr>
<tr>
<td>Tomb</td>
<td>470</td>
</tr>
<tr>
<td>Total</td>
<td>1206</td>
</tr>
</tbody>
</table>

Tomb 22 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.195</td>
<td>61</td>
</tr>
<tr>
<td>P.196</td>
<td>68</td>
</tr>
<tr>
<td>P.197</td>
<td>83</td>
</tr>
<tr>
<td>J.35</td>
<td>131</td>
</tr>
<tr>
<td>J.36</td>
<td>120</td>
</tr>
<tr>
<td>J.37</td>
<td>90</td>
</tr>
<tr>
<td>J.38</td>
<td>90</td>
</tr>
<tr>
<td>J.39</td>
<td>110</td>
</tr>
<tr>
<td>J.40</td>
<td>90</td>
</tr>
<tr>
<td>J.41</td>
<td>101</td>
</tr>
<tr>
<td>Tomb</td>
<td>478</td>
</tr>
<tr>
<td>Total</td>
<td>1422</td>
</tr>
</tbody>
</table>
Tomb 23 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.198</td>
<td>55</td>
</tr>
<tr>
<td>P.199</td>
<td>53</td>
</tr>
<tr>
<td>P.200</td>
<td>59</td>
</tr>
<tr>
<td>B.23</td>
<td>94</td>
</tr>
<tr>
<td>Tomb</td>
<td>510</td>
</tr>
<tr>
<td>Total</td>
<td>771</td>
</tr>
</tbody>
</table>

Tomb 24 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.201</td>
<td>55</td>
</tr>
<tr>
<td>P.202</td>
<td>62</td>
</tr>
<tr>
<td>B.24</td>
<td>94</td>
</tr>
<tr>
<td>Tomb</td>
<td>428</td>
</tr>
<tr>
<td>Total</td>
<td>639</td>
</tr>
</tbody>
</table>

Tomb 25 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B.25</td>
<td>94</td>
</tr>
<tr>
<td>Tomb</td>
<td>240</td>
</tr>
<tr>
<td>Total</td>
<td>334</td>
</tr>
</tbody>
</table>

Tomb 26 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.203</td>
<td>54</td>
</tr>
<tr>
<td>P.204</td>
<td>215</td>
</tr>
<tr>
<td>P.205</td>
<td>57</td>
</tr>
<tr>
<td>B.26</td>
<td>94</td>
</tr>
<tr>
<td>Tomb</td>
<td>514</td>
</tr>
<tr>
<td>Total</td>
<td>934</td>
</tr>
</tbody>
</table>

Tomb 27 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.206</td>
<td>122</td>
</tr>
<tr>
<td>B.27</td>
<td>94</td>
</tr>
<tr>
<td>Tomb</td>
<td>421</td>
</tr>
<tr>
<td>Total</td>
<td>637</td>
</tr>
</tbody>
</table>

Tomb 28 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B.28</td>
<td>94</td>
</tr>
<tr>
<td>Tomb</td>
<td>588</td>
</tr>
<tr>
<td>Total</td>
<td>682</td>
</tr>
</tbody>
</table>

Tomb 29 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.207</td>
<td>85</td>
</tr>
<tr>
<td>P.208</td>
<td>48</td>
</tr>
<tr>
<td>P.209</td>
<td>48</td>
</tr>
<tr>
<td>P.210</td>
<td>124</td>
</tr>
<tr>
<td>P.211</td>
<td>98</td>
</tr>
<tr>
<td>P.212</td>
<td>49</td>
</tr>
<tr>
<td>P.213</td>
<td>182</td>
</tr>
<tr>
<td>P.214</td>
<td>52</td>
</tr>
<tr>
<td>P.215</td>
<td>48</td>
</tr>
<tr>
<td>P.216</td>
<td>72</td>
</tr>
<tr>
<td>P.217</td>
<td>95</td>
</tr>
<tr>
<td>Tomb</td>
<td>546</td>
</tr>
<tr>
<td>Total</td>
<td>1447</td>
</tr>
</tbody>
</table>

Tomb 30 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.218</td>
<td>56</td>
</tr>
<tr>
<td>P.219</td>
<td>120</td>
</tr>
<tr>
<td>P.220</td>
<td>109</td>
</tr>
<tr>
<td>P.221</td>
<td>120</td>
</tr>
<tr>
<td>P.222</td>
<td>52</td>
</tr>
<tr>
<td>B.29</td>
<td>163</td>
</tr>
<tr>
<td>J.42</td>
<td>102</td>
</tr>
<tr>
<td>J.43</td>
<td>104</td>
</tr>
<tr>
<td>T.16</td>
<td>174</td>
</tr>
<tr>
<td>T.17</td>
<td>138</td>
</tr>
<tr>
<td>Tomb</td>
<td>506</td>
</tr>
<tr>
<td>Total</td>
<td>1644</td>
</tr>
</tbody>
</table>
Tomb 32 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.223</td>
<td>88</td>
</tr>
<tr>
<td>P.224</td>
<td>147</td>
</tr>
<tr>
<td>P.225</td>
<td>32</td>
</tr>
<tr>
<td>P.226</td>
<td>133</td>
</tr>
<tr>
<td>P.227</td>
<td>106</td>
</tr>
<tr>
<td>P.228</td>
<td>89</td>
</tr>
<tr>
<td>P.229</td>
<td>93</td>
</tr>
<tr>
<td>P.230</td>
<td>90</td>
</tr>
<tr>
<td>P.231</td>
<td>144</td>
</tr>
<tr>
<td>P.232</td>
<td>129</td>
</tr>
<tr>
<td>W.2</td>
<td>250</td>
</tr>
<tr>
<td>M.9</td>
<td>144</td>
</tr>
<tr>
<td>M.10</td>
<td>144</td>
</tr>
<tr>
<td>Tomb</td>
<td>416</td>
</tr>
<tr>
<td>Total</td>
<td>2005</td>
</tr>
</tbody>
</table>

Tomb 33 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.233</td>
<td>53</td>
</tr>
<tr>
<td>P.234</td>
<td>86</td>
</tr>
<tr>
<td>P.235</td>
<td>69</td>
</tr>
<tr>
<td>P.236</td>
<td>60</td>
</tr>
<tr>
<td>P.237</td>
<td>123</td>
</tr>
<tr>
<td>P.238</td>
<td>61</td>
</tr>
<tr>
<td>P.239</td>
<td>69</td>
</tr>
<tr>
<td>P.240</td>
<td>137</td>
</tr>
<tr>
<td>P.241</td>
<td>120</td>
</tr>
<tr>
<td>P.242</td>
<td>130</td>
</tr>
<tr>
<td>P.243</td>
<td>154</td>
</tr>
<tr>
<td>P.244</td>
<td>126</td>
</tr>
<tr>
<td>P.245</td>
<td>53</td>
</tr>
<tr>
<td>B.30</td>
<td>163</td>
</tr>
<tr>
<td>T.18</td>
<td>92</td>
</tr>
<tr>
<td>T.19</td>
<td>92</td>
</tr>
<tr>
<td>M.11</td>
<td>144</td>
</tr>
<tr>
<td>M.12</td>
<td>144</td>
</tr>
<tr>
<td>Tomb</td>
<td>441</td>
</tr>
<tr>
<td>Total</td>
<td>2317</td>
</tr>
</tbody>
</table>

Tomb 34 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.246</td>
<td>0</td>
</tr>
<tr>
<td>P.247</td>
<td>0</td>
</tr>
<tr>
<td>P.248</td>
<td>131</td>
</tr>
<tr>
<td>P.249</td>
<td>200</td>
</tr>
<tr>
<td>P.250</td>
<td>74</td>
</tr>
<tr>
<td>P.251</td>
<td>103</td>
</tr>
<tr>
<td>P.252</td>
<td>132</td>
</tr>
<tr>
<td>P.253</td>
<td>52</td>
</tr>
<tr>
<td>B.31</td>
<td>163</td>
</tr>
<tr>
<td>Tomb</td>
<td>441</td>
</tr>
<tr>
<td>Total</td>
<td>1440</td>
</tr>
</tbody>
</table>

Tomb 35 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.254</td>
<td>125</td>
</tr>
<tr>
<td>P.255</td>
<td>96</td>
</tr>
<tr>
<td>P.256</td>
<td>153</td>
</tr>
<tr>
<td>P.257</td>
<td>0</td>
</tr>
<tr>
<td>P.258</td>
<td>133</td>
</tr>
<tr>
<td>P.259</td>
<td>0</td>
</tr>
<tr>
<td>P.260</td>
<td>115</td>
</tr>
<tr>
<td>P.261</td>
<td>56</td>
</tr>
<tr>
<td>P.262</td>
<td>57</td>
</tr>
<tr>
<td>P.263</td>
<td>128</td>
</tr>
<tr>
<td>P.264</td>
<td>83</td>
</tr>
<tr>
<td>P.265</td>
<td>60</td>
</tr>
<tr>
<td>B.32</td>
<td>163</td>
</tr>
<tr>
<td>Tomb</td>
<td>441</td>
</tr>
<tr>
<td>Total</td>
<td>1610</td>
</tr>
</tbody>
</table>
Tomb 36 Object Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.266</td>
<td>90</td>
</tr>
<tr>
<td>P.267</td>
<td>102</td>
</tr>
<tr>
<td>P.268</td>
<td>99</td>
</tr>
<tr>
<td>P.269</td>
<td>118</td>
</tr>
<tr>
<td>P.270</td>
<td>102</td>
</tr>
<tr>
<td>P.271</td>
<td>182</td>
</tr>
<tr>
<td>P.272</td>
<td>57</td>
</tr>
<tr>
<td>P.273</td>
<td>105</td>
</tr>
<tr>
<td>P.274</td>
<td>126</td>
</tr>
<tr>
<td>B.33</td>
<td>155</td>
</tr>
<tr>
<td>J.44</td>
<td>300</td>
</tr>
<tr>
<td>Tomb</td>
<td>441</td>
</tr>
<tr>
<td>Total</td>
<td>1775</td>
</tr>
</tbody>
</table>

Tomb 37 Object Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.275</td>
<td>67</td>
</tr>
<tr>
<td>P.276</td>
<td>82</td>
</tr>
<tr>
<td>P.277</td>
<td>0</td>
</tr>
<tr>
<td>P.278</td>
<td>83</td>
</tr>
<tr>
<td>P.279</td>
<td>83</td>
</tr>
<tr>
<td>P.280</td>
<td>64</td>
</tr>
<tr>
<td>P.281</td>
<td>128</td>
</tr>
<tr>
<td>B.34</td>
<td>94</td>
</tr>
<tr>
<td>Tomb</td>
<td>546</td>
</tr>
<tr>
<td>Total</td>
<td>1209</td>
</tr>
</tbody>
</table>

Tomb 39 Object Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.282</td>
<td>219</td>
</tr>
<tr>
<td>B.36</td>
<td>94</td>
</tr>
<tr>
<td>J.48</td>
<td>120</td>
</tr>
<tr>
<td>Tomb</td>
<td>365</td>
</tr>
<tr>
<td>Total</td>
<td>798</td>
</tr>
</tbody>
</table>

Tomb 40 Object Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.37</td>
<td>94</td>
</tr>
<tr>
<td>Tomb</td>
<td>290</td>
</tr>
<tr>
<td>Total</td>
<td>384</td>
</tr>
</tbody>
</table>

Tomb 41 Object Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.38</td>
<td>94</td>
</tr>
<tr>
<td>W.3</td>
<td>179</td>
</tr>
<tr>
<td>Tomb</td>
<td>290</td>
</tr>
<tr>
<td>Total</td>
<td>563</td>
</tr>
</tbody>
</table>

Tomb 42 Object Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.39</td>
<td>155</td>
</tr>
<tr>
<td>B.40</td>
<td>155</td>
</tr>
<tr>
<td>B.41</td>
<td>155</td>
</tr>
<tr>
<td>J.49</td>
<td>245</td>
</tr>
<tr>
<td>J.50</td>
<td>245</td>
</tr>
<tr>
<td>J.51</td>
<td>120</td>
</tr>
<tr>
<td>M.14</td>
<td>285</td>
</tr>
<tr>
<td>M.15</td>
<td>450</td>
</tr>
<tr>
<td>Tomb</td>
<td>636</td>
</tr>
<tr>
<td>Total</td>
<td>2446</td>
</tr>
<tr>
<td>Tomb 43 Object Values</td>
<td>Tomb 2 Object Values</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>B.42 163</td>
<td>P.290 130</td>
</tr>
<tr>
<td>B.43 155</td>
<td>P.291 171</td>
</tr>
<tr>
<td>B.44 163</td>
<td>P.292 257</td>
</tr>
<tr>
<td>J.52 120</td>
<td>Tomb 606</td>
</tr>
<tr>
<td>J.53 105</td>
<td>Total 1164</td>
</tr>
<tr>
<td>J.54 105</td>
<td></td>
</tr>
<tr>
<td>M.16 235</td>
<td></td>
</tr>
<tr>
<td>Tomb 645</td>
<td></td>
</tr>
<tr>
<td>Total 1561</td>
<td></td>
</tr>
</tbody>
</table>

Non-Tomb Pottery Values

<table>
<thead>
<tr>
<th>P.283 152</th>
<th>P.290 130</th>
<th>P.293 86</th>
<th>P.300 152</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.284 147</td>
<td>P.291 171</td>
<td>P.294 138</td>
<td>P.301 192</td>
</tr>
<tr>
<td>P.285 154</td>
<td>P.292 257</td>
<td>P.295 171</td>
<td>P.302 202</td>
</tr>
</tbody>
</table>

LMIIIIB Object Values by Tomb²

<table>
<thead>
<tr>
<th>Tomb 1 Object Values</th>
<th>Tomb 4 Object Values</th>
<th>Tomb 11 Object Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.286 54</td>
<td>P.293 86</td>
<td>P.300 152</td>
</tr>
<tr>
<td>P.287 190</td>
<td>P.294 138</td>
<td>P.301 192</td>
</tr>
<tr>
<td>P.288 141</td>
<td>P.295 171</td>
<td>P.302 202</td>
</tr>
<tr>
<td>P.289 177</td>
<td>P.296 133</td>
<td>Tomb 585</td>
</tr>
<tr>
<td>Tomb 567</td>
<td>P.297 134</td>
<td>Total 1131</td>
</tr>
<tr>
<td>Total 1129</td>
<td>P.298 133</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.299 117</td>
<td></td>
</tr>
</tbody>
</table>

² Total tomb values not divided by number of individuals
Tomb 13 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.303</td>
<td>78</td>
</tr>
<tr>
<td>P.304</td>
<td>211</td>
</tr>
<tr>
<td>P.305</td>
<td>160</td>
</tr>
<tr>
<td>P.306</td>
<td>183</td>
</tr>
<tr>
<td>P.307</td>
<td>120</td>
</tr>
<tr>
<td>P.308</td>
<td>120</td>
</tr>
<tr>
<td>P.309</td>
<td>139</td>
</tr>
<tr>
<td>P.310</td>
<td>179</td>
</tr>
<tr>
<td>P.311</td>
<td>140</td>
</tr>
<tr>
<td>P.312</td>
<td>189</td>
</tr>
<tr>
<td>P.313</td>
<td>232</td>
</tr>
<tr>
<td>P.314</td>
<td>84</td>
</tr>
<tr>
<td>P.315</td>
<td>157</td>
</tr>
<tr>
<td>P.316</td>
<td>166</td>
</tr>
<tr>
<td>P.317</td>
<td>159</td>
</tr>
<tr>
<td>Tomb</td>
<td>822</td>
</tr>
<tr>
<td>Total</td>
<td>3139</td>
</tr>
</tbody>
</table>

Tomb 17 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.318</td>
<td>112</td>
</tr>
<tr>
<td>Tomb</td>
<td>486</td>
</tr>
<tr>
<td>Total</td>
<td>598</td>
</tr>
</tbody>
</table>

Tomb 29 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.319</td>
<td>130</td>
</tr>
<tr>
<td>P.320</td>
<td>168</td>
</tr>
<tr>
<td>P.321</td>
<td>193</td>
</tr>
<tr>
<td>P.322</td>
<td>131</td>
</tr>
<tr>
<td>P.323</td>
<td>143</td>
</tr>
<tr>
<td>Tomb</td>
<td>546</td>
</tr>
<tr>
<td>Total</td>
<td>1311</td>
</tr>
</tbody>
</table>

Tomb 31 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.324</td>
<td>180</td>
</tr>
<tr>
<td>B.45</td>
<td>114</td>
</tr>
<tr>
<td>Tomb</td>
<td>401</td>
</tr>
<tr>
<td>Total</td>
<td>695</td>
</tr>
</tbody>
</table>

Tomb 32 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.325</td>
<td>131</td>
</tr>
<tr>
<td>P.326</td>
<td>83</td>
</tr>
<tr>
<td>Tomb</td>
<td>416</td>
</tr>
<tr>
<td>Total</td>
<td>630</td>
</tr>
</tbody>
</table>

Tomb 33 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.327</td>
<td>85</td>
</tr>
<tr>
<td>P.328</td>
<td>134</td>
</tr>
<tr>
<td>Tomb</td>
<td>441</td>
</tr>
<tr>
<td>Total</td>
<td>660</td>
</tr>
</tbody>
</table>

Tomb 44 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.329</td>
<td>200</td>
</tr>
<tr>
<td>P.330</td>
<td>54</td>
</tr>
<tr>
<td>P.331</td>
<td>53</td>
</tr>
<tr>
<td>P.332</td>
<td>53</td>
</tr>
<tr>
<td>P.333</td>
<td>57</td>
</tr>
<tr>
<td>P.324</td>
<td>52</td>
</tr>
<tr>
<td>P.335</td>
<td>131</td>
</tr>
<tr>
<td>B.46</td>
<td>114</td>
</tr>
<tr>
<td>Tomb</td>
<td>275</td>
</tr>
<tr>
<td>Total</td>
<td>1038</td>
</tr>
</tbody>
</table>
Tomb 34 Object Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.336</td>
<td>140</td>
</tr>
<tr>
<td>P.337</td>
<td>0</td>
</tr>
<tr>
<td>P.338</td>
<td>130</td>
</tr>
<tr>
<td>Tomb</td>
<td>441</td>
</tr>
<tr>
<td>Total</td>
<td>711</td>
</tr>
</tbody>
</table>

Tomb 35 Object Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.339</td>
<td>128</td>
</tr>
<tr>
<td>P.340</td>
<td>149</td>
</tr>
<tr>
<td>Tomb</td>
<td>441</td>
</tr>
<tr>
<td>Total</td>
<td>718</td>
</tr>
</tbody>
</table>

Tomb 36 Object Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.341</td>
<td>87</td>
</tr>
<tr>
<td>Tomb</td>
<td>441</td>
</tr>
<tr>
<td>Total</td>
<td>528</td>
</tr>
</tbody>
</table>

Tomb 45 Object Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.342</td>
<td>17</td>
</tr>
<tr>
<td>P.343</td>
<td>55</td>
</tr>
<tr>
<td>P.344</td>
<td>84</td>
</tr>
<tr>
<td>P.345</td>
<td>82</td>
</tr>
<tr>
<td>P.346</td>
<td>52</td>
</tr>
<tr>
<td>P.347</td>
<td>140</td>
</tr>
<tr>
<td>B.47</td>
<td>155</td>
</tr>
<tr>
<td>J.55</td>
<td>120</td>
</tr>
<tr>
<td>Tomb</td>
<td>496</td>
</tr>
<tr>
<td>Total</td>
<td>1201</td>
</tr>
</tbody>
</table>

Tomb 46 Object Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.348</td>
<td>53</td>
</tr>
<tr>
<td>P.349</td>
<td>199</td>
</tr>
<tr>
<td>P.350</td>
<td>52</td>
</tr>
<tr>
<td>P.351</td>
<td>48</td>
</tr>
<tr>
<td>P.352</td>
<td>48</td>
</tr>
<tr>
<td>P.353</td>
<td>62</td>
</tr>
<tr>
<td>P.354</td>
<td>56</td>
</tr>
<tr>
<td>P.355</td>
<td>48</td>
</tr>
<tr>
<td>P.356</td>
<td>57</td>
</tr>
<tr>
<td>P.357</td>
<td>48</td>
</tr>
<tr>
<td>P.358</td>
<td>48</td>
</tr>
<tr>
<td>P.359</td>
<td>48</td>
</tr>
<tr>
<td>B.48</td>
<td>163</td>
</tr>
<tr>
<td>M.17</td>
<td>144</td>
</tr>
<tr>
<td>Tomb</td>
<td>496</td>
</tr>
<tr>
<td>Total</td>
<td>1570</td>
</tr>
</tbody>
</table>

Tomb 37 Object Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.360</td>
<td>140</td>
</tr>
<tr>
<td>P.361</td>
<td>104</td>
</tr>
<tr>
<td>P.362</td>
<td>139</td>
</tr>
<tr>
<td>Tomb</td>
<td>546</td>
</tr>
<tr>
<td>Total</td>
<td>929</td>
</tr>
</tbody>
</table>

Tomb 47 Object Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.363</td>
<td>148</td>
</tr>
<tr>
<td>B.49</td>
<td>155</td>
</tr>
<tr>
<td>B.50</td>
<td>123</td>
</tr>
<tr>
<td>Tomb</td>
<td>270</td>
</tr>
<tr>
<td>Total</td>
<td>696</td>
</tr>
</tbody>
</table>
Tomb 48 Object Values

<table>
<thead>
<tr>
<th>P.364</th>
<th>138</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.51</td>
<td>155</td>
</tr>
<tr>
<td>Tomb</td>
<td>506</td>
</tr>
<tr>
<td>Total</td>
<td>799</td>
</tr>
</tbody>
</table>

Tomb 49 Object Values

<table>
<thead>
<tr>
<th>B.52</th>
<th>163</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomb</td>
<td>185</td>
</tr>
<tr>
<td>Total</td>
<td>548</td>
</tr>
</tbody>
</table>

Tomb 50 Object Values

<table>
<thead>
<tr>
<th>B.53</th>
<th>163</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.18</td>
<td>200</td>
</tr>
<tr>
<td>Tomb</td>
<td>185</td>
</tr>
<tr>
<td>Total</td>
<td>548</td>
</tr>
</tbody>
</table>

Non-Tomb Pottery Values

<table>
<thead>
<tr>
<th>P.365</th>
<th>190</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.366</td>
<td>131</td>
</tr>
<tr>
<td>P.367</td>
<td>136</td>
</tr>
<tr>
<td>P.368</td>
<td>137</td>
</tr>
<tr>
<td>P.369</td>
<td>138</td>
</tr>
</tbody>
</table>

LMIIIIC Object Values by Tomb

Tomb 32 Object Values

<table>
<thead>
<tr>
<th>P.370</th>
<th>74</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.371</td>
<td>175</td>
</tr>
<tr>
<td>Tomb</td>
<td>416</td>
</tr>
<tr>
<td>Total</td>
<td>665</td>
</tr>
</tbody>
</table>

Tomb 33 Object Values

<table>
<thead>
<tr>
<th>P.372</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.373</td>
<td>143</td>
</tr>
<tr>
<td>P.374</td>
<td>135</td>
</tr>
<tr>
<td>P.375</td>
<td>131</td>
</tr>
<tr>
<td>P.376</td>
<td>102</td>
</tr>
<tr>
<td>P.377</td>
<td>163</td>
</tr>
<tr>
<td>Tomb</td>
<td>441</td>
</tr>
<tr>
<td>Total</td>
<td>1211</td>
</tr>
</tbody>
</table>

Tomb 34 Object Values

<table>
<thead>
<tr>
<th>P.378</th>
<th>131</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.379</td>
<td>147</td>
</tr>
<tr>
<td>Tomb</td>
<td>275</td>
</tr>
<tr>
<td>Total</td>
<td>553</td>
</tr>
</tbody>
</table>

Tomb 35 Object Values

<table>
<thead>
<tr>
<th>P.380</th>
<th>131</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomb</td>
<td>371</td>
</tr>
<tr>
<td>Total</td>
<td>502</td>
</tr>
</tbody>
</table>

Tomb 36 Object Values

<table>
<thead>
<tr>
<th>P.381</th>
<th>134</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.382</td>
<td>141</td>
</tr>
<tr>
<td>Tomb</td>
<td>300</td>
</tr>
<tr>
<td>Total</td>
<td>575</td>
</tr>
</tbody>
</table>

Tomb 37 Object Values

<table>
<thead>
<tr>
<th>P.383</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.384</td>
<td>152</td>
</tr>
<tr>
<td>Tomb</td>
<td>496</td>
</tr>
<tr>
<td>Total</td>
<td>788</td>
</tr>
</tbody>
</table>

3 Total tomb values not divided by number of individuals
Tomb 37 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.385</td>
<td>119</td>
</tr>
<tr>
<td>P.386</td>
<td>132</td>
</tr>
<tr>
<td>Tomb</td>
<td>546</td>
</tr>
<tr>
<td>Total</td>
<td>797</td>
</tr>
</tbody>
</table>

Tomb 53 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.387</td>
<td>172</td>
</tr>
<tr>
<td>P.388</td>
<td>42</td>
</tr>
<tr>
<td>P.389</td>
<td>144</td>
</tr>
<tr>
<td>P.390</td>
<td>143</td>
</tr>
<tr>
<td>P.391</td>
<td>140</td>
</tr>
<tr>
<td>P.392</td>
<td>98</td>
</tr>
<tr>
<td>P.393</td>
<td>79</td>
</tr>
<tr>
<td>P.394</td>
<td>76</td>
</tr>
<tr>
<td>P.395</td>
<td>104</td>
</tr>
<tr>
<td>P.396</td>
<td>128</td>
</tr>
<tr>
<td>P.397</td>
<td>99</td>
</tr>
<tr>
<td>P.398</td>
<td>99</td>
</tr>
<tr>
<td>P.399</td>
<td>99</td>
</tr>
<tr>
<td>P.400</td>
<td>53</td>
</tr>
<tr>
<td>J.56</td>
<td>153</td>
</tr>
<tr>
<td>J.57</td>
<td>132</td>
</tr>
<tr>
<td>J.58</td>
<td>120</td>
</tr>
<tr>
<td>J.59</td>
<td>120</td>
</tr>
<tr>
<td>J.60</td>
<td>100</td>
</tr>
<tr>
<td>J.61</td>
<td>200</td>
</tr>
<tr>
<td>J.62</td>
<td>200</td>
</tr>
<tr>
<td>J.63</td>
<td>150</td>
</tr>
<tr>
<td>J.64</td>
<td>180</td>
</tr>
<tr>
<td>J.65</td>
<td>130</td>
</tr>
<tr>
<td>J.66</td>
<td>110</td>
</tr>
<tr>
<td>J.67</td>
<td>110</td>
</tr>
<tr>
<td>T.20</td>
<td>190</td>
</tr>
<tr>
<td>Tomb</td>
<td>974</td>
</tr>
<tr>
<td>Total</td>
<td>4345</td>
</tr>
</tbody>
</table>

Tomb 54 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.401</td>
<td>135</td>
</tr>
<tr>
<td>P.402</td>
<td>72</td>
</tr>
<tr>
<td>P.403</td>
<td>72</td>
</tr>
<tr>
<td>P.404</td>
<td>82</td>
</tr>
<tr>
<td>B.54</td>
<td>222</td>
</tr>
<tr>
<td>J.68</td>
<td>220</td>
</tr>
<tr>
<td>J.69</td>
<td>110</td>
</tr>
<tr>
<td>W.4</td>
<td>179</td>
</tr>
<tr>
<td>M.19</td>
<td>No Score</td>
</tr>
<tr>
<td>Tomb</td>
<td>631</td>
</tr>
<tr>
<td>Total</td>
<td>1867</td>
</tr>
</tbody>
</table>

Tomb 55 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.405</td>
<td>92</td>
</tr>
<tr>
<td>P.406</td>
<td>127</td>
</tr>
<tr>
<td>P.407</td>
<td>127</td>
</tr>
<tr>
<td>P.408</td>
<td>82</td>
</tr>
<tr>
<td>Tomb</td>
<td>760</td>
</tr>
<tr>
<td>Total</td>
<td>1188</td>
</tr>
</tbody>
</table>

Tomb 56 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.409</td>
<td>167</td>
</tr>
<tr>
<td>P.410</td>
<td>197</td>
</tr>
<tr>
<td>P.411</td>
<td>62</td>
</tr>
<tr>
<td>Tomb</td>
<td>660</td>
</tr>
<tr>
<td>Total</td>
<td>1086</td>
</tr>
</tbody>
</table>

Tomb 57 Object Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.412</td>
<td>167</td>
</tr>
<tr>
<td>Tomb</td>
<td>240</td>
</tr>
<tr>
<td>Total</td>
<td>407</td>
</tr>
</tbody>
</table>
Tomb 58 Object Values

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.413</td>
<td>86</td>
</tr>
<tr>
<td>P.414</td>
<td>117</td>
</tr>
<tr>
<td>P.415</td>
<td>141</td>
</tr>
<tr>
<td>P.416</td>
<td>143</td>
</tr>
<tr>
<td>P.417</td>
<td>158</td>
</tr>
<tr>
<td>P.418</td>
<td>255</td>
</tr>
<tr>
<td>P.419</td>
<td>199</td>
</tr>
<tr>
<td>P.420</td>
<td>117</td>
</tr>
<tr>
<td>P.421</td>
<td>72</td>
</tr>
<tr>
<td>P.422</td>
<td>107</td>
</tr>
<tr>
<td>P.423</td>
<td>107</td>
</tr>
<tr>
<td>B.55</td>
<td>222</td>
</tr>
<tr>
<td>J.70</td>
<td>210</td>
</tr>
<tr>
<td>J.71</td>
<td>250</td>
</tr>
<tr>
<td>J.72</td>
<td>380</td>
</tr>
<tr>
<td>J.73</td>
<td>153</td>
</tr>
<tr>
<td>J.74</td>
<td>139</td>
</tr>
<tr>
<td>J.75</td>
<td>116</td>
</tr>
<tr>
<td>J.76</td>
<td>113</td>
</tr>
<tr>
<td>W.5</td>
<td>186</td>
</tr>
<tr>
<td>W.6</td>
<td>527</td>
</tr>
<tr>
<td>W.7</td>
<td>296</td>
</tr>
<tr>
<td>W.8</td>
<td>475</td>
</tr>
<tr>
<td>W.9</td>
<td>155</td>
</tr>
<tr>
<td>W.10</td>
<td>190</td>
</tr>
<tr>
<td>W.11</td>
<td>190</td>
</tr>
<tr>
<td>W.12</td>
<td>153</td>
</tr>
<tr>
<td>M.20</td>
<td>174</td>
</tr>
<tr>
<td>M.21</td>
<td>175</td>
</tr>
<tr>
<td>M.22</td>
<td>140</td>
</tr>
<tr>
<td>M.23</td>
<td>140</td>
</tr>
<tr>
<td>M.24</td>
<td>1161</td>
</tr>
<tr>
<td>M.25</td>
<td>129</td>
</tr>
<tr>
<td>M.26</td>
<td>139</td>
</tr>
<tr>
<td>M.27</td>
<td>141</td>
</tr>
<tr>
<td>M.28</td>
<td>137</td>
</tr>
<tr>
<td>M.29</td>
<td>133</td>
</tr>
</tbody>
</table>

Tomb 59 Object Values

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.424</td>
<td>119</td>
</tr>
<tr>
<td>J.77</td>
<td>625</td>
</tr>
<tr>
<td>J.78</td>
<td>210</td>
</tr>
<tr>
<td>W.13</td>
<td>300</td>
</tr>
<tr>
<td>W.14</td>
<td>281</td>
</tr>
<tr>
<td>W.15</td>
<td>198</td>
</tr>
<tr>
<td>W.16</td>
<td>169</td>
</tr>
<tr>
<td>W.17</td>
<td>236</td>
</tr>
<tr>
<td>W.18</td>
<td>239</td>
</tr>
<tr>
<td>W.19</td>
<td>512</td>
</tr>
<tr>
<td>M.32</td>
<td>130</td>
</tr>
<tr>
<td>Tomb</td>
<td>713</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomb</td>
<td>8629</td>
</tr>
</tbody>
</table>

Tomb 58 or 59 Object Values

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.425</td>
<td>147</td>
</tr>
<tr>
<td>W.20</td>
<td>186</td>
</tr>
</tbody>
</table>

Non-Tomb Pottery Values

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.426</td>
<td>141</td>
</tr>
<tr>
<td>P.427</td>
<td>137</td>
</tr>
<tr>
<td>P.428</td>
<td>140</td>
</tr>
</tbody>
</table>
General LMIII Pottery Values by Tomb

Tomb 32 Pottery Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.429</td>
<td>48</td>
</tr>
<tr>
<td>P.430</td>
<td>54</td>
</tr>
<tr>
<td>P.431</td>
<td>48</td>
</tr>
<tr>
<td>P.432</td>
<td>56</td>
</tr>
<tr>
<td>P.433</td>
<td>54</td>
</tr>
<tr>
<td>P.434</td>
<td>56</td>
</tr>
<tr>
<td>P.435</td>
<td>48</td>
</tr>
<tr>
<td>P.436</td>
<td>58</td>
</tr>
<tr>
<td>P.437</td>
<td>54</td>
</tr>
<tr>
<td>P.438</td>
<td>47</td>
</tr>
<tr>
<td>P.439</td>
<td>48</td>
</tr>
<tr>
<td>P.440</td>
<td>53</td>
</tr>
<tr>
<td>P.441</td>
<td>48</td>
</tr>
<tr>
<td>P.442</td>
<td>53</td>
</tr>
<tr>
<td>Total</td>
<td>725</td>
</tr>
</tbody>
</table>

Tomb 33 Pottery Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.443</td>
<td>54</td>
</tr>
<tr>
<td>P.444</td>
<td>53</td>
</tr>
<tr>
<td>P.445</td>
<td>53</td>
</tr>
<tr>
<td>P.446</td>
<td>53</td>
</tr>
<tr>
<td>P.447</td>
<td>53</td>
</tr>
<tr>
<td>P.448</td>
<td>48</td>
</tr>
<tr>
<td>Total</td>
<td>314</td>
</tr>
</tbody>
</table>

Tomb 37 Pottery Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.449</td>
<td>61</td>
</tr>
<tr>
<td>P.450</td>
<td>130</td>
</tr>
<tr>
<td>P.451</td>
<td>52</td>
</tr>
<tr>
<td>P.452</td>
<td>60</td>
</tr>
<tr>
<td>P.453</td>
<td>47</td>
</tr>
<tr>
<td>P.454</td>
<td>52</td>
</tr>
<tr>
<td>P.455</td>
<td>48</td>
</tr>
<tr>
<td>P.456</td>
<td>47</td>
</tr>
<tr>
<td>Total</td>
<td>497</td>
</tr>
</tbody>
</table>

Non-Tomb Pottery Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.457</td>
<td>141</td>
</tr>
<tr>
<td>Total</td>
<td>141</td>
</tr>
</tbody>
</table>