THE SHORN AND OBSCURE

HISTORICAL GEOGRAPHY

OF

MARCUS

Ted Peña
Since the Spring of 1974 the archaeology program at Wesleyan University has undertaken the excavation of colonial and early federalist sites in downtown area of Middletown, Connecticut with the view of gaining a broad picture of life during these times. While current projects concentrate on work on the urban areas of the town, work will eventually be extended into the outlying areas due to the desire to obtain a broad socio-economic sample and the accelerating destruction of sites in the downtown area. The subdivision of the original Township of Middletown into several incorporated towns has left the current Township with very few zones that have not been extensively altered since the period in question. One zone that is an exception to this pattern is the district of Naromas. This paper was prepared out of an interest in researching this area in order to ascertain more of its archaeological potential and to demonstrate how the evolution of the geography was largely controlled by environmental conditions.

The study of Naromas is complicated in that as an area of marginal significance there is little systematic documentary evidence to direct fieldwork. The earliest extant map that depicts Naromas is only from 1859, and study of the area through the Middletown land records is difficult due to the obscurity of place names that might be used to reconstruct patterns of land use and population distribution. This being
the case, it is helpful to approach the study of Maromas through an examination of aspects of the environment, particularly the geomorphology of the district.

The socio-economic detachment of Maromas from the rest of Middletown is primarily due to factors of bedrock composition. Although Maromas, like Middletown, is situated along the Connecticut River, it is located south of the fault that separates lands with sedimentary bedrock from those with metamorphic bedrock. The presence of highly resistant metamorphics has resulted in a high relief landscape in Maromas (See figure 1), with the entire district covered with steep slopes and numerous areas of exposed bedrock. Some of the more prominent features are White Rock (500 ft.), Bear Hill (660 ft.), and Bible Rock (626 ft.). The entire district is contained within a meander loop of the river, with the riparian lands dominated by the soils of the narrow flood plain and the remainder of the district composed of hills and level areas of high elevation that shall be termed "interior uplands". Drainage in the interior uplands is generally poor, with the result that there are numerous swamps and the area has been utilized to create reservoirs for the town of Middletown. Only small sections of the district are now cleared, although it is apparent that larger areas have been under cultivation in the past. A clear example of such a configuration may be found on Thayer Hill, where either side is covered with a different type of vegetation, indicating that the natural cycle of succession has been interrupted by clearing.

The transition from the level plow lands characteristic
of the South Farms district of Middletown and the interior uplands of Haromas is not coextensive with the transition from sedimentary to metamorphic bedrock types. The vertical section shown in figure 1 illustrates this point. Elevation tends to increase as one moves from the sedimentary to the metamorphic zone, but the steep gradient slopes that mark the true transition to the interior uplands does not occur until a point between 400 and 1,450 meters East of the fault. Geologic maps of the East Haddam Quadrangle show that the high relief areas are controlled by the presence of pegmatite in the parent material. Thus the points of maximum elevation throughout Haromas are found in association with beds of pegmatite, some examples being White Rock, the South slope of Bear Hill and the ESE spur of Thayer Hill. Examination for the presence/absence of pegmatite seems to be a useful test for determining whether or not a border area may be considered part of the socio-economic zone of Haromas. Lands to the immediate West of the pegmatite beds, although overlying metamorphics, seem to fall within the land use patterns common in the richer areas of Middletown.

The highly resistant nature of the metamorphic bedrock in Haromas has meant that the soils system is weathering limited rather than transport limited and many of the middleslopes and summits of hills have little or no soil cover. There are accumulations of regolith in local depressions, which are often swampy due to the low drainage density associated with highly resistant parent materials. Thus the soil catena runs from extremely thin inceptisols in the areas of high elevation to
Histosols and clayey soils in level areas.

Land areas that fall between these two extremes of soil type are relatively rare in Karomas. Homogeneity of parent material controls the soil slopes throughout the district, with soil zones of less than 15% seldom and soil zones of 8% never overlying more than one type of bedrock. Low gradient soils do not occur in areas of low elevation outside the river floodplain due to the higher drainage density resulting from the higher energy levels present in runoff waters. Drainage is poor in the interior uplands because the system lacks sufficient kinetic energy to initiate channel cutting. Areas adjacent to points of maximum elevation however, seem to receive the small input that is necessary to initiate channel cutting and thus are relatively well drained. Soils suitable for cultivation then are limited to those areas that overlie homogenous zones of bedrock and that are adjacent to areas of maximum elevation. An examination of soil, bedrock and cultured topographic maps of the Karomas district reveals that such areas occur primarily in the vicinity of Brooks and Bear Hill Roads. These lands are adjacent to Thayer Hill, overlie beds of either schist or gneiss, and are within the drainage basins of the major streams in the area, Hubbard Brook and the brook to the south of Bear Hill Road (Karomas Creek?).

The vegetation in the district during the early years of colonization by Europeans was probably much like that present today in the interior uplands. Intermediate slopes and moderately well drained level areas are covered with thick stands
of deciduous trees. High gradient slopes and summits tend to be devoid of vegetation, which is reflected in the local place names such as "White Rock" and "Bare Hill", the original name of Bear Hill. Poorly drained level and low elevation areas are covered with swamp grasses and other marsh vegetation. Some areas have apparently had vegetation patterns altered within the last three centuries by the alteration of natural drainage patterns and the clearing and cultivation of woodland, but the extent of such lands is impossible to determine. Thus study of successional patterns in the area would probably not warrant the effort since "Some investigators attempt to infer historical patterns of land use from the qualitative pattern of vegetation, arriving at successional patterns with a marvelous but spurious internal inconsistency." Preliminary survey work indicates that the presence of certain types of exotic vegetation may be helpful in locating some house sites.

The history of land use in Mamaroneck cannot be understood without first examining some factors associated with the early settlement and land use patterns in Middletown proper. On a regional level, the salient feature in the combination of factors that controlled the choice of the site of Middletown for one of the early settlements along the lower Connecticut is its location immediately above the metamorphic bedrock zones. River channels in highly resistant materials like the metamorphics tend to be less active in the formation of meander belts and thus have relatively narrow floodplains. Entrenchment of the channel is the dominant erosional force, resulting in rivers that are narrow and deep. Ecologically, both
shallow rivers with broad floodplains and deep rivers with narrow floodplains offer advantages for settlement, the former providing large areas of fertile soil, the latter a communications route that is negotiable by large ships and relatively secure from flooding and morphologic instability. The location of a settlement near an interface between two such systems is advantageous, and it appears that this was responsible for the establishment and latter success of Middletown.

The metamorphic/sedimentary fault may also have been a local controlling factor in the choice of the Middletown site. The highly resistant metamorphics on the downstream side of the fault have resisted the corrasion of the river's sediment load and stand out as a steep barrier on either side of the river, continuing across the landscape almost to the channel itself. The channel is severely constricted, decreasing from an upstream maximum of approximately 450 meters to a width of almost 200 meters immediately below the fault, in an area known as "The Straits". The wall-like fault-line scarp and the constricted channel are of minor significance when the river is at normal levels of discharge, however at flood periods, the increased volume of discharge is unable to pass through The Straits rapidly enough to prevent locally augmented overbank discharge. This means that while areas immediately above the fault have an increased risk of damage from flooding, the soils of the floodplain receive increased amounts of sediment nutrients that are associated with prime agricultural lands. The former factor is often ignored in favor of the latter in the selection of set-
tlement sites, and this was the case with Middletown. Low frequency events were probably not considered to be of much consequence, and catastrophic events such as those of 1642, 1703, 1801 and 1937 were either not anticipated, or as the first date might indicate, totally ignored.

The first organized settlement in the Middletown area occurred in 1650. An earlier reconnaissance of the area revealed resources that were believed to be capable of supporting fifteen families, although by 1670 there were fifty-two families settled within the lands of the town. There is no record of the configuration of the original parcels within the town plot, but certain similarities with other towns along the Connecticut probably existed and allow us to envision the appearance of early Middletown.

The open field system was selected for use by the original settlers, who were probably most comfortable with it, but not ignorant of other systems. In open field farming, each head of a family in the community receives several scattered parcels of land that are intended to serve the various functions that are needed for a family to subsist. Some areas of the town's lands are held in common for the use of all inhabitants, the most commonly found type being pasturage. The population of the community is concentrated in a nuclear town that is often quite distant from the fields and other work areas. This system places a heavy emphasis on social cohesion, having been initiated in Western Europe during the late Classical period when the rural population was increasingly threatened by invaders and was forced to assume the burden of local defense.
through improved organization. The advantages of such a system were many in a strange land inhabited by natives that if not aggressively violent, were at least thought to be so.

The nuclear settlement of Middletown was probably very similar to those of Springfield, Massachusetts and Hartford. (figure 2). In these towns, the position of the river was obviously the dominant force in determining the position of the original parcels within the town plot. As many lots as possible were given direct access to the valuable resources of the river and the path or road that grew up alongside it. Middletown was also placed at the confluence of a tributary, in this case the combined waters of the Mattabeset and Coginchaug Rivers. It is interesting to note that Hartford was placed a short distance behind the river bank, possibly to permit rapid access to common grazing grounds, but more probably because this area was a backwater bog too poorly drained to sustain a dry or healthy community.

In the past quarter century there has been an increasing movement towards the quantification and analysis of factors associated with the mechanisms of settlement selection and locational analysis. These configurations may sometimes be comprehended intuitively, but geographers feel that there is a need to objectify conclusions. Although such activities are sometimes condemned as statistical overkill, or irrelevant to situations where men acted through individual instances of decision making and knew nothing of what they were "supposed to do" according to geographical theories, they are quite essential in understanding the past, and as Michael
Chisolm shows in Rural Settlement and Land Use, valid. "It may be objected that human beings are not entirely rational. This is true, but neither are they fools, nor do they choose to do more work than is necessary." It is also essential to apply quantitative methods to the use of applicable documents such as land records; they must not be accepted for what they say that they are. This belief is supported by Stanley South in Method and Theory in Historical Archeology. "The scientific archeologist does not depend on classifications written by merchants, priests or craftsmen for measuring variability, but classifies his data in accordance with the variables he is measuring as determined by the questions he is asking."

Although this report is too brief to contain instances of original quantification of data, it does make use of the theories developed through such quantitative analysis.

Settlement and subsistence patterns may be reconstructed through a careful appraisal of the ecological facets of the area under study (see Flannery, MacNeish, Patterson in Struvever, Prehistoric Agriculture). In terms of economic geography the factors that exerted the most powerful influence on locational trends during the period in question were the "relationship to its (a settlement's) lands and...its links with the outside world -- lines of communication and other inhabited centers." The European settlers concerned themselves with the procurement of cultivatable land, pastureage, fuel, building materials and water, and position in of their settlement in such a way as to give it easy access to markets and security (see figure 3).
Water is the single most valuable resource, since it is in constant use and difficult to transport and store. In addition, bodies of water, as was the case with the Connecticut River, often provide the most convenient means of transport and communication in preindustrial societies. Thus positioning a settlement at the confluence of two rivers is highly advantageous from the transportational aspect as well as for water for consumption. The differences of current, depth, size etc. between the two streams may also serve to multiply the food resources of the area since increased variety in environment means an increased potential for supporting a larger number of species of fauna and flora. Plowland follows next in importance after water resources since farming is the most labor intensive activity in an agrarian society and thus pays greatest rewards if used and located most advantageously. Behind plowland follow pasturage, which is least demanding of labor, fuel procurement, which is also not highly labor intensive, and procurement of building materials, which is a low frequency activity.

Middletown seems to have been located in an area well suited for agricultural activity according to these criteria. The abundance of farmland, water and transportational resources has been explained above. Fuel, pasturage and building materials could all be located in the immediate vicinity, or taken from lands beyond the metamorphic/sedimentary fault in order to avoid using nearby lands that would be more productive under cultivation. The site of Middletown offered access to all of the microenvironments conducive to the success of a farming community.
Although such assets seemed to insure the prosperity of an agricultural community, two factors soon led to the existence of problems. The first was the nature of soils in New England. The thin, stony spodosols found throughout much of the area were for agricultural purposes inferior to those the colonists were accustomed to working in the British Isles. While per acre yield was lower than anticipated and began to decline due to unwise farming methods, the task of clearing and improving land to the point where it could be cultivated was more than could be met by early settlers. Cleared lands tended to be farmed and refarmed into destruction, some other lands were simply too poor to bother clearing.

While it was becoming clear that New England soils were not as productive as English ones, and that prime agricultural areas that had been found were declining in quality, the population, and thus the demand for farmland was increasing, giving rise to the second problem alluded to above. Increases in population coupled with shortages of land provided powerful mechanisms for the breakdown of large efficient farms and the growth of the small, subsistence farmstead on marginal lands. Sons with brothers and immigrants could not expect to be able to procure sizable estates.

The subdivision of estates into the subsistence bracket through inheritance could only be combatted by abandoning an agricultural lifestyle or obtaining lands on the frontier. The immigration problem could be controlled by establishing a list of proprietors of the town's lands and restricting all future land decisions to those people. Such an action was
resorted to in Middletown in the year 1670: "It was agreed
that in this year should be considered as proprietors, and
after laying out a large common and a hundred and fifty acres
for a parsonage, the undivided lands should be laid out accord-
ing to their lists. According to this agreement, all undivi-
ded lands, which then belonged to them, were laid out after-
wards." This act insured that all undivided lands in the
town would be apportioned to the fifty-two heads of families
then residing therein. Proprietors could sell their lands
and did, but this at least guaranteed them some sort of pro-
fit from the land. This action was similar to one carried out
in Andover, Massachusetts, which was settled in the 1640's
and recognized a core of proprietors in 1662.

The lands secured for the original proprietors of Middletown in 1670 included Haromas. It is clear from the nomenclature of early land transactions in the area that the area was not well known to the inhabitants of Middletown at this time. Geographical references are few and place names are fleeting or change. According to Sketch of Haromas a short book written under the auspices of the W.P.A. in 1937, parcels were drawn up in Haromas in 1671 because there was not enough land on the East side of the river to allow a share for all the proprietors under the division of the lands agreed upon during the previous year.

Eleven parcels were drawn up and distributed in the Haro-
mas area, which would have been called "Straits Hills at that
time. They ranged in size from 164 acres to 737.5 acres and
comprised altogether 4,354 acres. Land records suggest that
much of the nearby land was at that time still undistributed. The only explanation as to why the economically poor and distant parcels in Maromas would have been distributed instead of these better lands is that perhaps the town sought to reinforce its boundaries by encouraging the development of lands along the Haddam Bounds immediately to the south of Maromas. The size differential in the eleven lots may be attributed to the fact that the acreage of parcels was directly related to a man's rank, a practice very common in colonial New England. The larger lots tended towards a location in the center of the eleven parcels where the most profitable lands were also found, implying that rank accounted for quality as well as quantity of land.

The land records for the first quarter century of use of the parcels in Maromas indicate that exploitation was irregular and non-intensive. In all transactions where the nature of the parcel is mentioned, there is never any mention of farmland, fields, cleared land or any sort of structure. Most parcels are classified as bog, meadow, swamp, woodland or the catchall, upland. This coincides with the laws of economic rent, which hold that low intensity activities tend to be delegated to the most distant holdings and holdings that have lower promise of return for input. Presumably most landowners resided in the town plot and made occasional visits to Maromas to gather wood and stone and pasture their animals.

The nature of the division of lands that included Maromas is very similar to the fourth division of land recorded for
Andover, Mass. by Henry Green in Four Generations. The Andover parcels ranged in size from 80 to 400 acres, twenty times larger than the lots given to the same men by the first division of lands. Furthermore it was required that the lots be located more than four miles from the town meeting house. Green maintains that, "With allotments at such a distance and dispersed in such a manner, it was evident at the open field system of the first two divisions was permanently abandoned." If such a process was also at work in Middletown, we should see it as a function of trends seen in Andover, where: "The dispersed land-holding pattern: (1) encouraged members of the community to consolidate their holdings and (2) it spurred farmers to move from the village plot to locations closer to their fields." Transactions recorded in the Middletown land records imply that both processes were at work in the Naromas parcels and affected a major change in the land-use pattern by at the latest, 1708.

The trend towards the consolidation of settlements may be intuitively understood to reflect the desire to simplify and increase the efficiency of agricultural activities. According to Sketch of Naromas: "These men (the original grantees) had home lots in the townplot so did not build here, but soon deeded their land." It is apparent that to some men it seemed prohibitive to maintain parcels of land in such a distant and unimportant area; while the shortage of land made the prospect of adding to or acquiring holdings on even the worst land seemed attractive to others. The desire to consolidate is often reflected in the landowners trading parcels or
a landowner renting a tract from his neighbor. "In this way, although the pattern of ownership means that some parcels are far removed from farmsteads, the pattern of operation is rather less unfavorable."

Although no thorough analysis of land transactions for the first decades of holding in Haramas has been made and thus no patterns have been observed, some transactions indicate that the trend toward consolidated holdings was occurring. In 1676, only five years after the division had been made, Thomas Miller purchased all of the land that fell between his original plot and the Haddan Bounds. These were the lands distributed to John Tappan, who had somehow managed to divest himself of them since Haddistown is listed as the grantor. The transaction implies that Miller has already bought the 6.5 acres of Tappan's land that borders the river, and with the second transaction he increased his total holdings there to 353 acres. Another transaction that involved the acquisition of a large estate in Haramas, this time by a non-proprietor, was the purchase by Francis Whitmore of the 435.5-acre tract originally given to Edward Higby. These transactions indicate that settlers were seeking to consolidate their estates through the purchase of adjoining lands, or purchase large parcels that were probably intended to be the owner's entire estate. Population pressures and divisions among heirs prevented these large estates from enjoying a long existence.

In addition to the occurrence of large estates, the appearance of homesteads in Haramas strongly indicate the weaken-
ing of the open field system. The desire to minimize traveling time to and from fields often led farmers to construct crude shelters on their outlying holdings so that they could remain in their fields during times when intensive labor was essential. The growth of small farms and the decline of soils meant that increasingly often farmers were long distances from fields that required increasing amounts of investment if a substantial yield was to be returned. There is no documentary evidence that reveals exactly when the next logical step, the erection of a homestead, occurred in Karomas, but by examining land records and other evidence we can derive a date ante quem.

Sketch of Karomas is little help in determining dates of construction of the earliest houses in Karomas. The text is confusing, often leaving one unsure whether the date given is for the construction of a house or the purchase of the lot by the eventual builder. The earliest clear date is 1741, the earliest possible date is 1696. A secure date may be derived in the Middletown land records from a transaction of 1722. In this year Benjamin West deeded to his son Benjamin West Jr. and held to his son-in-law, Iseepel Lee, all of his estate in Karomas. The deed mentions; a dwelling house, yards, a garden, additional buildings, an "old" orchard, 2 acres corn land, 1 acre grassland, 4.5 additional acres and a barn. The tract, 20 acres in all, was clearly West's homestead and from the variety of facilities located on it, probably all of his land. If the two grantees were to support households on a mere ten acres apiece, extraordinarily intensive agriculture
must have been necessary if they were to remain farmers. According to Grant's study of Kent, Connecticut, "an average of 14 acres of plowed land plus and average of 75 acres of other types of land was the minimum in late colonial or early national times for a family to live above subsistence levels." Although land may have been more productive during this earlier period, it is clear that 10 acre farms would have been able to eke out a subsistence level existence at the very best. In any event, this transaction demonstrates that by 1722 the small subsistence farm was present in Haromas.

The earliest date obtainable for an indication of the initiation of permanent occupation in Haromas is to be found in the local graveyard. This plot has been largely disturbed by the construction of the Connecticut Valley Railroad and is currently inaccessible since it lies on Pratt and Whitney land. It is located on an eighty foot high bluff above the river near the crest of the meander loop. The presence of a burial plot may be seen as a reflection of the concept of Haromas as an entity, and it is likely that the facility was located near what was considered the center of the entity. The choice of the bluff site might have been motivated by aesthetic considerations or the desire to free all level areas for agriculture. The earliest known date for a burial in the cemetery is 1703 for Sarah Prior, wife of Daniel Prior. This indicates that by the first decade of the Eighteenth Century Haromas had become a populated entity of which one could consider oneself as much a member as to be buried there. Thus by this time land in Haromas was probably being farmed as well
used for pasture, and wood and stone gathering.

Hudson (1969) developed a model that allows for the explanation of the development of an area such as Maroonas. According to the model, there are three stages of colonization, each containing different traits:

(1) Colonization - Occupation of a frontier area by units of a given population. The density of settlements will be low and the locations random.
(2) Spread - Usually the result of the process of population growth. The spatial process is the diffusion of settlements and increase in density. The pattern often results from "offspring" communities that develop near the original colonizing communities and move out successively. Locations tend to be clustered.
(3) Competition - Settlement is a density dependent process and eventually the available area becomes filled. At this stage competition between the units occurs and the eventual effect is an equilibrium state with the size of settlements approaching optimum. The theoretical distribution of settlements at this stage should be regular with a maximum spacing between settlements, given the density of settlements over the total area.

Alan Swenlund utilized this model in his study of the settlement pattern of Franklin and Hampshire Counties, Massachusetts. Through quantification of data and application of the nearest neighbor statistic (a comparison between actual distances between settlements as opposed to the expected values) it was shown that offspring settlements and stage two clustering occurred in the spread of settlements along the Connecticut River to the North and South of Springfield. Between 1700 and 1750. A time lag in the growth of population pressure along the upper Connecticut in comparison with its appearance along the lower Connecticut near Middletown. (see figure 4). Thus a stage two development in the Mid-
The Middletown area should have been developed by the beginning of the Eighteenth Century. This seems to fit the evidence for the initiation of settlement in areas.

While Hudson's model and Swanlund's application of it can be utilized to describe the settlement of Narrows and other areas along the lower Connecticut, it fails to account for the mechanisms that lie behind the pattern, lumping them under the term "population pressures". The economic effects of location on agricultural production is related to the processes that here effect population distribution. Chapters four and seven of Michael Chisolm's *Rural Settlement and Land Use* supply much data that link the distance of a tract of land from the farmer's homestead with net and gross production, labor intensiveness, choice of crops and market value of the land. The practice of building nuclear farm settlements instead of distributing homesteads throughout the fields is the result of social factors such as the desire to enjoy the social interaction present in a village.

The dispersal of homesteads from Middletown proper throughout the countryside was probably the result of the lessening of defensive constraints through factors such as the resolution of King Phillip's War and the Europeans' increasing sense of security in the Connecticut Valley. More importantly, the constantly increasing population and decreasing soil quality was forcing the settlers to seriously consider farming poor quality land and giving new impetus to the trend towards labor efficiency. As the colonists pushed into the interior they often chose as settlement sites alluvial terraces where
native grasses rather than trees were the ground cover; this meant an initially fertile soil... Unfortunately the colonists agricultural methods only served to hasten the depletion of the soils. Crop rotation was rarely used and fertilizers were usually limited to the manure that collected on the fields... The only alternative to more efficient use of available land was relocation on the frontier, a move that social inertia made impossible for many.

Several studies of the configuration of field patterns reveal that there is a general threshold value beyond which distance of land from the farmer's homestead begins to play a critical role in settlement pattern. "At a distance of 3-4 kilometers the cultivation necessitate a radical modification of the system of cultivation or settlement - for example by the establishment of subsidiary settlements... If the distances involved are actually greater than this, then it is necessary to look for some powerful constraining reason which prevents the establishment of settlements nearer the land." This factor may help to explain the initiation of a small settlement at Naromas.

The placement of the center (i.e. the graveyard) of the settlement along the bank of the Connecticut follows the traits characteristic of Hudson's phase two settlement. The river was such a valuable resource that initially settlers were drawn to expand areas along its banks, even though that required the occupation of lands that were largely unsuitable for agriculture. The result was a highly clustered, non-random settlement pattern. This trend seems to have been pre-
sent within Naromas itself throughout the Eighteenth Century, since six of the seven house sites known to be from that period were located along the River Road.

The creation of the road network in Naromas reflects the growth and change of the settlement pattern there. One route, the Naffam road (extant by 1716), was a inter-town connector route and was largely antecedent to and had a locational effect on the settlement of Naromas. Houses tended to cluster along this route, although it was originally created for purposes that took no account of the consideration of a settlement in Naromas. The remainder of the Eighteenth Century roads probably developed from footpaths connecting two homesteads (e.g., River Road), connecting the offspring settlement to the nuclear town (Hanging Rock Road), giving access to fields in the interior uplands (Naromas Road), or serving as feeder routes to extant roads (Freeman Road). Also of interest is the record of the town vote of 1725 that a proved the construction of a road to the "Straits Hills", a clear demonstration of the increasing view of Naromas as a settled area.

In the second half of the Eighteenth Century there was a general trend away from the riverside locations that characterized Naromas as a stage town settlement. This includes the creation of a new cemetery in 1766 because "...under the present circumstances of the Inhabitants of Naromas, their Durying Place is much out of the middle of the Place and the way to go to it."16 In addition, when the Naromas school district, extant by 1745, was divided into two districts in 1779, the boundary was not a North-South line essentially dividing...
inhabitants from a riverside cluster from those of a Haddan
road cluster, but an East-West line that indicates a certain
a count of riverside to interior interaction.

A cursory study of the land records for Haromas between
1674 and 1740 reveals the growth of the factors that led to
the eventual decline of agriculture in the Connecticut Valley
and the migration westward. A study of 56 transactions shows
that while throughout the period in question there was a mar-
ket in land priced between 5 schillings and 5 pounds per acre,
between 1730 and 1740 land prices climbed above 5 pounds for
the first time and ran as high as 7.2 pounds per acre. Part
of the price increase may be attributed to currency fluctuations
and the higher prices brought by tracts with growing percent-
ages of improved lands, much of the change may be related to
the acute shortage of land. The decade 1720-1730 also saw the
disappearance of large estates in Haromas. In 1726 the Fran-
cis Whitmore estate was divided among his two sons, and there-
after virtually all transactions involved parcels falling be-
tween five and twenty acres in size. Land in even the poorest
areas was increasing in price and becoming more difficult to
obtain in sizable tracts.

The shift of the center of Haromas to the South and West
as reflect 20 by the location of the new cemetery also reflected
change in the road system. The routes of
Brooks and Bear Hill Roads give more direct access to Middle-
town from the later proposed center. A study of soil maps for
the area reveals that they also shift the best agricultural
lands to be found in Haromas, those that are well drained with
slopes of less than 15%.

Although there are census and tax records from middle town for the last decade of the Eighteenth Century, it is difficult to determine either the population or its distribution in Maromas. The tax list for 1800, which represents only taxable items in possession of the people in question, shows that of 88 taxpayers in the Maromas district, 31 paid over $100, but that these were concentrated in only 20 families. Since land was probably the prime taxable item in Maromas we may suppose that at this time there were only about twenty families in Maromas that possessed all but very negligible estates. The United States census for 1790 also adds some interesting details to the picture of the area. Although the heads of families are marked for district, it is possible to isolate that area of the list that pertains to Maromas by matching names with families that are known to have lived in Maromas. As best as can be told from this imperfect source, the population seems to have undergone no major changes during the last decade of the century. Of interest is the fact that there was not one slave or apprentice listed among the Maromas families, demonstrating the subsistence nature of life in the district.

Agriculture in Maromas seems to have all but died during the first half of the Nineteenth Century. The earliest known map that depicts Maromas is from 1859 and seems to indicate that the area had too few houses to support a population like the one suggested by the tax and census lists. The houses are more evenly distributed throughout the district, with even the poorly drained areas of the interior uplands being
inhabited, a logical extension into the third stage of Hudson's model.

The construction of the Connecticut Valley Railroad line along the riverbank at some point between 1857 and 1874 caused a sudden reorientation of settlement in Karomas. The railroad became the most efficient route to Middletown, causing the abandonment of Hanging Rock road as a redundant route, and reducing the importance of Brooks road as a connector. Ultimately the tiny hamlet of Laurel developed near the Karomas depot. Economic activity in Karomas during this period seems to have centered around the quarries, which began activity in about 1820 and prospered as late as 1885. The creation of Brooks road extension coincides with the final period of quarrying activity and was clearly built because of it.

During the Twentieth Century the northern section of the interior uplands has remained abandoned. The southern section, that area adjoining Brooks and Dece Mill Roads, has managed to retain a small residential and agrarian population that is currently increasing, primarily due to man’s growing independence from environmental constraints. Other areas, primarily those along the riverbank, have been utilized for the location of industrial facilities, namely Pratt and Whitney Aircraft and the Middletown power plant. The former has radically altered the configuration of the road network by severing River Road and phasing out the importance of the Freeland Road and Haddock Sound areas by making areas to the North much more accessible through Aircraft Road. The construction of the rail line and the industrial facilities within the last cen-
tury has resulted in the rapid shift and then the destruction of the center of Haromas.

The decline and near disappearance of Haromas should be expected. Middletown served as the initial parent settlement and sent out an offspring settlement that fit into the cluster pattern along the river. This stage two settlement began to feel the pressures of its poor environmental situation, and reorient itself to gain as much as possible from its situation. Ultimately it was unable to respond adequately and declined in importance. Traces of abandoned land use patterns such as stone walls, cellar holes and man-altered forest succession still remain for study due to the general unsuitability of the land for cultivation and development. The area may be well worth investigating for the archaeologist, but certain constraints must be kept in mind. Landscape and settlement patterns have survived in Haromas because the area was geographically abnormal. As such, we must expect that the abnormality would also have been reflected in the lifeways of the early colonists. Whatever data obtained from studies of the area may be more properly utilized in comparison with data from Middletown proper rather than to supplement it.
Relief and Landscape Factors

A. ROLLING HILLS AND LOWLANDS

as drainage conditions (see Chapter 25). Each kind of soil can be said to occupy an ecological niche in a landscape. Areal slope spectra can be determined for soil series. The relative position of the niche is variable from one major landscape to another. Such a relief-soil relationship is seen in Table 9.2.

The most readily observable influence relief has on soil development is summed up briefly in the statement water runs downhill. Reference is made here to surface water, or that free water moving over the soil surface. Moving surface water almost always carries some solid particles with it and produces erosion or change in the relief. Also, it tends to cause the sloping areas to be drier, from the standpoint of infiltrated water, than level areas. As a result of the runoff from the sloping areas, the depressional areas and valleys receive more surface water than surrounding upland soil. This in effect results in greater leaching of those soils formed at the base of the slope than those formed on upland areas and a minimum of leaching on the steep slopes for any given climate.

The role of relief is finally viewed as a real factor in the development of soil. Its exact role is however, difficult to evaluate with examples of a generalized nature. Relief functions differently in various environmental situations. It serves to alter the influence of parent material and time by the erosional and depositional changes that occur because of it. It serves to alter climate via its control on runoff, groundwater table, and aspect,
The analysis inverted building materials have been given the least weight because though they are bulky and awkward to handle they are required only at spasmodic intervals.

The manner in which these relationships operate can best be described by considering two hypothetical village locations, \(x \) and \(y \), which are alternatives the one to the other. A survey of the two situations might show that the various resources were situated at the distances indicated in Table 14 from the spot where the village would be built. Column D shows the cost of exploiting a particular kind of resource at the given distance of so many kilometres from the proposed village site. Location \(y \) has the smallest sum of such costs,
SETTLEMENT AND WAR

in the Connecticut
Massachusetts. Brookline
Northfield, then the
The Groton-Lancaster
whose western limits
After King Philip's
attacks, others were aban-
doned. The settlement area was set
Colony's coastal
Connecticut River, where
the border line had gone across
Connecticut Valley. These were the towns of
an eastern Connecticut,
but the rest of eastern
English settlers. The Bay now ended at
scattered settlements in
Kennebec River.

The colonists in
Philip's War had
status quo before
France began to
struggle together
The effect of King
land was only a
warfare would have
areas was affected
ation of warfare, by
of New England
ferred by the colonists
of New England

By the early years, the
be found only in
which population
the English and the
Europe of the century.
From "Sketch of Maromas"

PECABLY ORGINAL

MAROMAS

PORTLAND
Connecticut or Great

Sergt. Wm Ward
Acre

Mr. Giles Hamlin
767 1/2

Mr. Samuel Stow
724 1/2

Thomas Wetmore
621

Thomas Stow
283 1/2

William Harris
570 1/2

Samuel Hall
402 1/2

John Harbut
252

Edward Higbee
455 1/2

Thomas Miller
139

See p. 13.

Rocks

Lines of 1000 acres

Cemeteries

Disused roads

Wells

Ponds

Roads
The cross sections appear to be the approximate layout of the original grants in 1671. See pages 3 and 4.

Houses. **Owners 1937.**
1. Laurel Brick & Sand Co. (Dunham)
2. J. V. Muller
3. Laurel Brick & Sand Co. (Bailey)
4. J.W. and L. Broadbent
5. Laurel Brick & Sand Co. (Scovill.)
6. F. & J. Babor
7. A. & R.M. Clark
8. J. C. Muller
9. Conrad G. Koller
10. **"**
12. Swan Paterson
13. G. & S. Reid
14. J. & L. Halse
15. Andrew J. Bengston

Roads
A. Reservoir or Hanging Rock
B. Brook's Road
C. Bear Hill or Old Thayer
D. Freeman or Hubbard
E. Saybrook or Haddam
F. Shumpike
G. Maromas
H. River
I. Lomas way to ferry.
J. Probable disused cross roads.

Sundry.
K. Laurel Dock
L. Dart's Island
M. Recent ferry
N. Harris Ferry
O. Whitmore Dock
P. Scovill Landing
Q. Sears Shoals
R. Hubbard Pond.

Quarries.
S. Quarry D. or Bevenue
T. Lucas or Murphy
U. Whitmore
V. Henry W. Scovill (3)
W. Edwin Scovill

Additional Houses:

In the earliest Land Records of Middletown Maromas was spelled in the following ways: Maromuck, Maromage alias Maromock, Morranck.
<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Acres</th>
<th>Price</th>
<th>Location</th>
<th>North Bound</th>
<th>East Bound</th>
<th>South Bound</th>
<th>West Bound</th>
<th>Grantee</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1674-6/15</td>
<td>Upland</td>
<td>40</td>
<td>100</td>
<td>Great River</td>
<td>Samuel Parke</td>
<td>Highway</td>
<td>Highway</td>
<td>100 acres</td>
<td>James Rossel</td>
<td>Section of unbounded land</td>
</tr>
<tr>
<td>1674</td>
<td>Upland</td>
<td>50</td>
<td>240</td>
<td>Great River</td>
<td>Isaac</td>
<td>Highway</td>
<td>Highway</td>
<td>50 acres</td>
<td>John Prang</td>
<td>Transaction completed 1682</td>
</tr>
<tr>
<td>1674-1</td>
<td>Upland</td>
<td>80</td>
<td>300</td>
<td>Great River</td>
<td>Thomas Rossel</td>
<td>Highway</td>
<td>Highway</td>
<td>80 acres</td>
<td>Francis Wallis</td>
<td>Sale of 30 acres</td>
</tr>
<tr>
<td>1676</td>
<td>Upland</td>
<td>115.5</td>
<td>400</td>
<td>Great River</td>
<td>Thomas Rossel</td>
<td>Highway</td>
<td>Highway</td>
<td>115.5 acres</td>
<td>Francis Wallis</td>
<td>Sale of 30 acres</td>
</tr>
<tr>
<td>1677</td>
<td>Upland</td>
<td>120</td>
<td>200</td>
<td>Great River</td>
<td>Thomas Rossel</td>
<td>Highway</td>
<td>Highway</td>
<td>120 acres</td>
<td>Francis Wallis</td>
<td>Sale of 30 acres</td>
</tr>
<tr>
<td>1678</td>
<td>Upland</td>
<td>150</td>
<td>300</td>
<td>Great River</td>
<td>Thomas Rossel</td>
<td>Highway</td>
<td>Highway</td>
<td>150 acres</td>
<td>Francis Wallis</td>
<td>Sale of 30 acres</td>
</tr>
<tr>
<td>1679</td>
<td>Upland</td>
<td>180</td>
<td>360</td>
<td>Great River</td>
<td>Thomas Rossel</td>
<td>Highway</td>
<td>Highway</td>
<td>180 acres</td>
<td>Francis Wallis</td>
<td>Sale of 30 acres</td>
</tr>
<tr>
<td>1680</td>
<td>Upland</td>
<td>210</td>
<td>420</td>
<td>Great River</td>
<td>Thomas Rossel</td>
<td>Highway</td>
<td>Highway</td>
<td>210 acres</td>
<td>Francis Wallis</td>
<td>Sale of 30 acres</td>
</tr>
</tbody>
</table>

Note: The table continues with similar entries for various transactions involving Great River property.
<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Type</th>
<th>Action</th>
<th>Accuracy</th>
<th>Effect</th>
<th>North Bound</th>
<th>East Bound</th>
<th>South Bound</th>
<th>West Bound</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-161</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA ZANES or</td>
<td>LANCE or</td>
<td>HIGHWAY</td>
<td>ZANES</td>
<td>(1)</td>
</tr>
<tr>
<td>6-160</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>400</td>
<td>0</td>
<td>LANCE or</td>
<td>LANCE or</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>6-21</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>1000</td>
<td>0</td>
<td>LA ZANES or</td>
<td>LANCE or</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>6-26</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA ZANES or</td>
<td>LANCE or</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>6-270</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>800</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>6-281</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>6000</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>6-287</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>400</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>6-305</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>200</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>6-350</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>1500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>6-72</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>7-11</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>7-16</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>1000</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>7-21</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>7-28</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>7-31</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>1000</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>8-14</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>8-21</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>8-28</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>8-31</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>9-1</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>9-8</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>9-14</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>9-21</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>9-28</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>10-5</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>10-12</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>10-19</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>10-26</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>10-31</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>11-5</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>11-12</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>11-19</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>11-26</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>11-31</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>12-9</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>12-16</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>12-23</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>12-30</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>1-7</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>1-14</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>1-21</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>1-28</td>
<td>0</td>
<td>mid</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>LA MARMARIS</td>
<td>LA MARMARIS</td>
<td>HIGHWAY</td>
<td>LANCE</td>
<td>(1)</td>
</tr>
<tr>
<td>#</td>
<td>Date</td>
<td>Type</td>
<td>Acres</td>
<td>Price</td>
<td>Location</td>
<td>North Bound</td>
<td>East Bound</td>
<td>South Bound</td>
<td>West Bound</td>
<td>Grantor</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>51</td>
<td>1736</td>
<td>Meadow</td>
<td>10</td>
<td>$20</td>
<td>In Mansfield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>1736</td>
<td>Meadow</td>
<td>40</td>
<td>$20</td>
<td>In Mansfield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>1734 Sept 23</td>
<td>Meadow</td>
<td>30</td>
<td>$55</td>
<td>In Mansfield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>1739</td>
<td>Meadow</td>
<td>60</td>
<td>$20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>1739</td>
<td>Meadow</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>1739</td>
<td>Meadow</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>1722</td>
<td>House Lot</td>
<td>20</td>
<td>$10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>1722</td>
<td>House Lot</td>
<td>30</td>
<td>$15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1732</td>
<td>Meadow</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1732</td>
<td>Meadow</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>1733</td>
<td>Meadow</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>1733</td>
<td>Meadow</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>1735 Jun 4</td>
<td>Meadow</td>
<td>20</td>
<td>$20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>1735</td>
<td>Meadow</td>
<td>30</td>
<td>$20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>1735</td>
<td>Meadow</td>
<td>60</td>
<td>$20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>1735</td>
<td>Meadow</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>1732 Jan 17</td>
<td>Meadow</td>
<td>30</td>
<td>$15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>1732 Jan 1</td>
<td>Dwelling Lot</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>1733 Nov 30</td>
<td>Dwelling Lot</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>1736 Feb 6</td>
<td>Dwelling Lot</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1 Horn., p. 93.
2 Field, p. 82.
3 Grovan, p. 4.
4 Chisolm, p. 45.
5 South, p. 5.
6 Ibid., p. 102.
7 Field, p. 33.
8 Grovin, p. 57.
9 Ibid., pps. 59-60.
10 Sketch of Karomas, p. 4.
11 Chisolm, p. 64.
12 MacMannis, p. 100.
13 Swedlund, p. 22.
14 MacManis, p. 90.
15 Chisolm, p. 131.
16 Sketch of Karomas, p. 10.
Bibliography

Field, David. Statistical Account of the County of Middlesex, Clark and Lyman, Middletown, Conn., 1819.

Maps

United States Soil Service Maps, Middletown area.

Preliminary Geologic Map of the Middle Haddan Quadrangle,
prepared by Gordon Eaton and John Rosenfeld.

Map from Essex Atlas of Middlesex County, 1874.

Map of Middletown, 1850.

Records

Land Records of the Town of Middletown, volumes 1-10.