Stability of DNA-Linked Nanoparticle Crystals

Document
Document

In this thesis, a coarse-grained molecular dynamics model is used to address three factors which impact the kinetic and thermodynamic stability of BCC and FCC crystals formed in DNA-linked nanoparticle systems: (i) surface mobility, (ii) the number of attached strands, and (iii) the size of the nanoparticle core. The model predicts that systems with surface mobility form crystals with lower free energy, but also a lower heat of fusion. FCC crystals have a higher kinetic melting temperature when formed in systems with low surface mobility, but BCC crystals have a lower kinetic melting temperature when formed in systems with low surface mobility. The model demonstrates that the kinetic melting temperature of BCC and FCC systems increases with increasing number of strands, but that it decreases with increasing core size. The results presented here are intended to provide guidance in the choice of parameters when experimentally forming crystals.

    Item Description
    Name(s)
    Thesis advisor: Starr, Francis
    Date
    April 15, 2010
    Extent
    95 pages
    Language
    eng
    Genre
    Physical Form
    electronic
    Discipline
    Rights and Use
    In Copyright – Non-Commercial Use Permitted
    Digital Collection
    PID
    ir:1594