Quasi Classical Trajectory Binning: A Systematic Study of the Effect of Binning on Li2 Ne Scattering

Document
Document

Although quantum mechanics is the most accurate descriptor of nature at molecular length scales, sophisticated quantum calculations are still infeasible for complex systems. As a result, there is a demand for methods of classical calculation that are able to accurately simulate systems with quantum features. In this study, we examine modifications to the quasiclassical trajectory method (QCT) on the Li2 + Ne inelastic scattering system. More specifically, we examine the effects of binning, the process of discretizing the continuous distribution of final classical actions in order to calculate collision cross sections for rovibrational transitions. In order to undertake this, we calculate collision cross sections using the QCT with a variety of different binning methods. We examine the efficacy of these binning methods through comparing the QCT results with quantum mechanical results, and through testing the QCT for time reversal symmetry.

    Item Description
    Name(s)
    Thesis advisor: Stewart, Brian
    Date
    April 15, 2015
    Extent
    92 pages
    Language
    eng
    Genre
    Physical Form
    electronic
    Discipline
    Rights and Use
    In Copyright – Non-Commercial Use Permitted
    Digital Collection
    PID
    ir:1327