Document Type

Article

Publication Date

2005

Journal or Book Title

Geological Society, London, Special Publication

Volume

245

Abstract

The Laramie Peak shear system (LPSS) is a 10 km-thick zone of heterogeneous general shear (non-coaxial) that records significant tectonic regeneration of middle-lower crustal rocks of the Archean Wyoming province. The shear system is related to the 1.78–1.74 Ga Medicine Bow orogeny that involved the collision of an oceanic-arc terrane (Colorado province or Green Mountain block or arc) with the rifted, southern margin of the Wyoming province. The style and character of deformation associated with the LPSS is distinctive: a strong, penetrative (mylonitic) foliation commonly containing a moderately steep, SW-plunging elongation lineation. In mylonitic quartzo-feldspathic gneisses of the Fletcher Park shear zone, shear-sense indicators indicate southside-up, and this interpretation is supported by metamorphic and geochronological studies across the LPSS. We argue that distributed general shear (non-coaxial) involving high-strain zones and multiple folding events yielded a broad, en-masse uplift (Palmer Canyon block) during the late stages of the Medicine Bow orogeny. The LPSS is thus an excellent example of how crystal-plastic strain is distributed in sialic crust during an oceanic arc-continental margin collision. As magmatism (and attendant thermal softening) did not occur in the Wyoming province during its partial subduction beneath the oceanic-arc terranes of the Colorado province, the crystal-plastic strain manifested within the Wyoming province is mechanical in nature and was concurrent with crustal thickening. Strain is localized into discrete shear zones separated by weakly deformed rocks. These high-strain zones are commonly located along contacts between differing rock types and we propose that mechanical and chemical weakening processes may have contributed to strain localization.

Share

COinS