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Abstract:

This thesis explores the concept of dynamic vortex drag resulting from Kelvin
wave excitations on vortex cores in thin films of superfluid *He. In this system,
vortex drag is commonly accepted as a significant mechanism for the dissipation
of third sound wave motion; however, current models implementing a static drag
force have been unable to quantitatively explain anomalous third sound free decay
results found in the literature. In this thesis, many possible manifestations of
Kelvin wave agitation are explored and are shown to correct the deficiencies of
existing static drag theories. It is therefore concluded that vortex drag in thin

films of superfluid *He is most likely a dynamic, and not a static, process.
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Ch. 1 Introduction

1.1 Overview

This thesis seeks to explain anomalous third sound free decay data previously
taken by the Quantum Fluids Group at Wesleyan University. It will attempt
to further knowledge about the mechanism of pinned vortex drag in third sound

dissipation processes.

Format:

1. Chapter 1 will provide a brief introduction to the physics of superfluids,
quantized vortices, third sound, and wave motion present on quantized vortex
cores. It will also provide examples of anomalous free decays and discuss

previous attempts at solving the problem that we concern ourselves with.

2. Chapter 2 will propose and implement a model used to describe the dynamic
interaction of a quantized vortex tip with the resonator substrate. The model
will be able to qualitatively demonstrate many of the characteristics we desire,

but will ultimately fail in its rigor and completeness.

3. Chapter 3 will derive the pinning force (critical velocity) associated with a

straight vortex moving over an arbitrary three dimensional resonator surface.

4. Chapter 4 will propose and implement a more rigorous quantitative model for
dynamic vortex interaction with the substrate that will be seen to be capable

of explaining previously unreconcilable experimental free decay data.



5. Chapter 5 will summarize the important conclusions of this thesis and identify
future work that is necessary to further verify the proposal that dynamic
vortex drag is an important physical phenomenon in thin-film superfluid *He

systems.

1.2 Superfluids

When the temperature of *He is lowered below its A point of 2.17 K, the “He
atoms (Bosons) collapse into a macroscopic quantum-mechanical state, forming a
novel state of matter known as the superfluid. Since the behavior of “He atoms
below the A point is dominated by their shared quantum-mechanical state, which
overcomes any interatomic interactions, the superfluid state allows one the abil-
ity to experiment on a macroscopic quantum-mechanical system. Below the A
point of *He, the resulting superfluid system can be modeled as consisting of two
distinct fluid components: the superfluid and the normal fluid. The superfluid
component, as a result of being in a macroscopic quantum-mechanical state, ex-
hibits interesting physical properties such as zero viscosity and infinite thermal
conductivity. The normal fluid component can be qualitatively conceived of as
a soup of thermal excitations. Within this model, each of the two components
possesses its own velocity at each point within the fluid, as well as its own fraction
of the system’s mass density. While it is often useful to think of the superfluid
system in the terms of this “two-fluid model”, it is important to note that the
system itself does not physically separate into two fluids, and that the utility of
this model lies in its ability to facilitate conceptualization of the observed phys-
ical properties of the superfluid. All experiments referred to in this thesis were
performed at temperatures below 1 K, ensuring that the thin-film *He system was
dominated by the superfluid component, and that the normal fluid component

was negligible [1].



1.3 Third Sound and Free Decays

A property of superfluid *He that is useful to note is its ability to be uniformly
adsorbed as a very thin film over the surface of a container. These thin films
possess the ability to propagate waves of many types through them. For our
particular purposes, the most important type of wave that superfluid thin films
can propagate is the wave type known as “third sound” [1]. Third sound waves can
be thought of as the molecular analog of shallow water waves, sloshing back and
forth and oscillating in a predominantly longitudinal manner. Continuing with
the shallow water wave analogy, there must be a downward restoring force that
allows these waves to propagate. In the shallow water wave scenario, this restoring
force is the earth’s gravitational force upon the ocean. Clearly, at the molecular
level gravity is negligible, so the Van Der Waals force with the substrate (Au
plated SiOj) turns out to be the dominant restoring force in the system. In the
superfluid system, the normal fluid component becomes clamped to the substrate
via the scattering of thermal excitations; that is, its local velocity, 17,3, is zero
everywhere within the film. It should be noted that the longitudinal displacement
of the superfluid in third sound oscillations far exceeds its vertical displacement,
thereby allowing the superfluid to be treated as an essentially two-dimensional
system, greatly simplifying the required fluid mechanics.

The experiments performed by the Quantum Fluids Group at Wesleyan Uni-
versity, and with which we concern ourselves at present, involved electrostatically
driving a resonator cavity containing a thin film of superfluid *He uniformly ad-
sorbed over the resonator surface. Third sound wave motion was driven up to
a particular amplitude, and then allowed to decay away when the driving force
was turned off. How these third sound oscillations decayed was then studied. At
first thought, one would expect these third sound waves to experience an expo-

nential decay as a result of thermal oscillations in the superfluid resulting from



the relative motion of the superfluid component and the normal component. On
a semi-log plot, such an exponential decay would appear as a straight line, with a
linear decay constant, Q. While many of the free decays can be described by this
simple exponential decay model, a significant number of them exhibit anomalous
behavior.

In studies performed by Anand Swaminathan ’09, these anomalous free decay
curves were catalogued and analyzed [2|. In his work, he found that there were

two types of anomalous free decays observed: the “kink-type” (Figure 1.1) and the

“bulge-type” (Figure 1.2).
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Figure 1.1 An example of a free decay exhibiting the two decay constant

“kink-like” behavior on a semi-logarithmic plot.
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Figure 1.2 An example of a free decay exhibiting the “bulge-like” transition

behavior between decay constants on a semi-logarithmic plot.

The primary purpose of the work performed by Anand Swaminathan was to
identify quantized vortex motion as the mechanism responsible for the deviations
from the expected simple exponential decay behavior. Ultimately, Swaminathan
did not manage to completely resolve the issues behind the mechanism in these
anomalous free decays; his model was able to explain the bumps, but not in a
quantitatively consistent fashion. The conclusion of Swaminathan’s thesis held
that quantized vortex motion is still the dominant mechanism responsible for
these kinds of anomalous free decay curves, however the exact dynamics of these
vortices are still poorly understood. It is this issue that we will try to resolve
in the following chapters, but first we must become familiarized with the general

physics of quantized vortices prior to discussing their drag behavior.

1.4 Superfluid Vortices

All superfluid vortices can be characterized by a quantized circular flow with
closed streamlines around a vortex core. This quantized circulation, s, is simply

the quantized version of the Kelvin circulation constant of classical fluid dynamics:



K= iv_;aﬁ = nm% (1.1)

where 07 is the velocity of the superfluid, h is Planck’s constant, my is the mass
of a “He atom, and n is a positive integer representing a specific quantized state of
circulation [3]. Equivalently, the velocity field of a straight, quantized vortex can
be expressed in the same manner as a classical vortex, except that it also carries

along the quantization condition in its velocity field:

v =nl¢ (1.2)

where 7 is the distance from the center of the vortex |3|. The unit vector ¢
denotes the direction of rotation (circulation), where positive ¢ implies a right-
handed rotation when viewing the vortices from above. Clearly, by glancing at
Equation 1.2, one can see that there is a singularity as » — 0, ¢.e. inside of the
vortex core. Little is known about the nature of the interior of a vortex core
except that it is a region where anomalous behavior occurs. Therefore, Equation
1.2 can only be valid up to the core radius ay. For superfluid vortices in *He, the
core radius has been experimentally measured as approximately ag = 1.3 A [3].

Regarding the quantum number n appearing in Equations 1.1 and 1.2, super-
fluid vortices with n > 1 are never seen experimentally. The reason for this lies
in the energetic favorability of a single n > 1 vortex to break up into two vortices
of n =1, as a single vortex of n > 1 represents a higher energy state than a pair
of singly-quantized vortices.

Continuing the analogy with classical vortices, a quantized vortex can be con-
sidered as a physical object due to its inherent quantum stability, and when ex-
posed to a perturbing flow it experiences a lateral force known as the Magnus
force [3]. The Magnus force arises when the rotational flow of the vortex interacts
with a perturbing fluid flow. Due to the rotation of the vortex, the flow velocity

on one side of the vortex will be greater than the flow velocity on the opposite



side of the vortex, resulting in a Bernoulli pressure difference on opposite sides
of the vortex. In our particular case, the oscillating third sound flow acts as this
perturbing flow source that the quantized vortex encounters, and it consequently
induces a Magnus force that must be taken into account in the vortex’s resultant

motion.
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Figure 1.3 Illustration of the Magnus force on a vortex.

The Magnus force associated with a vortex that moves at a velocity vy is given

by [3]:

- N
FMagmLs = /Who(@) - U_v)) X k (13)

where p is the density of *He, hg is the length of the vortex core (height of the
thin-film), and vL is the background third sound flow at any given time in a third

sound oscillation.

Another important aspect of superfluid vortices is their ability to pin to defect
sites on a substrate. In early attempts to explain the “bulge-like” anomalous

free decays, Fred Ellis and Hai Luo posited that the critical velocity phenomena



observed in free decays were the result of the pinning and unpinning of quantized
vortices from the resonator substrate. In this first and simplest model, vortices
were assumed to be pinned to surface roughness or defects (local energy minima)
up to the point that a critical third sound flow velocity, v., was reached. At this
point, the third sound flow would become strong enough that the Magnus force
exerted on the vortex core would be sufficient to depin the vortex from the defect
site, setting it free to drag along the surface of the substrate, with the critical
force dissipating energy in a manner akin to a classical frictional force. When the
oscillating third sound flow then decreased below this critical velocity, the vortex
would repin to the nearest defect site, and the process would repeat itself at the
beginning of the next third sound cycle.

It should be noted that this simple static drag force model can be used to
succesfully explain energy loss in high amplitude flows |4], and is also qualitatively
capable of explaining the presence of the “bulge” in the anomalous free decays |2|.
However, as mentioned previously, one cannot arrive at quantitatively accurate
explanations of the bulge behavior by invoking just a simple static drag force.

In order to understand the power dissipated by a vortex undergoing a static
drag force, one needs to precisely understand the resulting motion of a vortex
given the sum of the forces acting upon it. While vortices may be treated like
objects due to the extent of their cores, the common theoretical assumption is
that a superfluid vortex core possesses no mass, and therefore cannot have any
net force exerted upon it, lest it feel an infinite acceleration. Using Newton’s

Second Law, and balancing all of the forces acting on a vortex core:

Fl = prh(T — T2) % b — foby = 0, (1.4)

where fy is the frictional drag force that acts in the direction opposite to the

vortex’s motion, one can derive the components of the vortex velocity perpendic-



ular and parallel to the third sound flow in the steady state [2]:

One must keep in mind that Equation 1.5 is only valid for a static drag force.

Since past simulations involving this static drag force model have failed at quan-
titatively describing many experimental phenomena, we seek to modify the vortex
dynamics so that behavior other than just a static drag force is observed. The
question of how one can physically argue that a vortex will experience something
other than a static drag force is then the next concern that must be addressed.
We propose that the dragging of the vortex across the resonator substrate does
not simply dissipate energy, but also makes the vortex less likely to repin to the
substrate. The simplest way to think of this argument is by imagining the drag
force acting as a perturbation on the vortex tip that generates wave disturbances
that propagate up the vortex core. This wave agitation results in an additional
nonzero kinetic energy on the core, which can, in many conceivable ways, make it
much more difficult for the vortex to repin to a defect site. This mode of thinking
would then result in the drag force being decreased as a result of the dragging
process, and transform the static drag model of vortex motion into one involving
a dynamic drag force. The next logical step in this approach is to describe the
wave motions that will be present on a quantized vortex core so that we may
speak quantitatively about the amount of additional kinetic energy that would be

created, and retained, on the core by such a disturbance.



1.5 Kelvin Waves

There are a number of wave types that have the ability to propagate on a
vortex core. The most studied, and arguably most common type of wave present
on a classical vortex core is the Kelvin wave. While the theory of Kelvin waves
was originally formulated for a classical vortex core, Kelvin wave modes have been
experimentally observed in bulk *He [6]. It is reasonable to assume that vortices
in the thin-film setup are also capable of propagating Kelvin wave modes on their
cores.

In 1880, Lord Kelvin derived the dispersion relation for waves on a vortex core,
of which there are two branches: a slow branch and a fast branch [3,7,8] . The

two branches obey the following dispersion relation:

Wt (k) = % (<17 1+ (ka) 1252 (1.6)

where K, is a modified Bessel Function of order “n”.

Here (+) denotes the fast branch with waves moving with the circulation of
the vortex, (—) denotes the slow branch moving opposite the circulation of the
vortex, a is the core radius, and k is the quantized circulation constant.

It is important to both qualitatively, and quantitatively, understand the con-
tribution that each branch provides to the total vortex wave motion. In 1985,
a seminal paper on quantized vortex motion in superfluid *He was published by
K.W. Schwarz [5], in which he advanced much of the understanding of quantized
vortex motion to where it stands today. The most important contribution made
with regard to our present work is his description of vortices following the local
induction approximation. In the local induction approximation, one can deter-
mine the time-evolved motion of a vortex core based purely on its geometry at

a given point in time; no knowledge is needed about the velocity field. In other

10



words, if one were to distort a vortex core into an initial configuration, let go,
and then watch the distortion propagate into time-evolved vortex motion, one
could describe the subsequent motion through an understanding of only the self-
interaction of the vortex with its own flow field.

In analyzing the two branches of the dispersion relation, one discovers that the
fast branch does not in fact follow the self-induced local velocity field, whereas
the slow branch does. Therefore, it has been common in the literature to only
take interest in the slow branch [3]. It is also true that the fast branch motion
happens on much faster time scales than that of the slow branch, and therefore is
not of as much interest for the description of slow vortex-flow interactions in our
present discussion [3,5].

However, one cannot simply throw away the fast branch without understand-
ing the effects of that action. In the Schwarz paper, Schwarz shows that one can
effectively linearize the equations of motion for vortex self-interaction and time
propagation and get dynamics that are consistent with solving the exact equations
of motion. In throwing away the fast branch, one does, however, lose some infor-
mation. In our own studies, we linearize the equations of motion and use Fourier
analysis to understand the effect of discarding the fast branch of the dispersion
relation. Ultimately, we learn that when one uses only the slow branch, one can-
not completely specify the position and velocity of the vortex core simultaneously.
The local induction approximation is an entirely deterministic method depending
solely on the vortex geometry, and when used, one cannot control the velocity
field of the vortex. Therefore, we only specify the geometry of the vortex in our
simulations.

In order to check that linearized Fourier analysis is an adequate means of
describing Kelvin wave propagation on a vortex core, we performed simulations
involving the time evolution of geometrical distortions on the core. In Figure 1.4,

snapshots in time of a representative simulation are presented. In this simulation,
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an initial Gaussian disturbance is set on an infinite vortex core, and the motion is
propagated through time using linear Fourier analysis. If at any point in time one
imagines a right handed circulation, curls his/her right hand around the core in
the direction of that circulation, and then imagines his/her fingers as the flow of
the vortex, one can see that this flow, through self-interaction with the rest of the
vortex core, can be used to predict the frame by frame progression of the vortex’s
geometry. The last frame of Figure 1.4 is simply provided to show that after long
times, the disturbance has effectively propagated away from the initial distortion

site.

Figure 1.4 - Time propagation of Kelvin waves on a vortex core resulting from
an initial Gaussian displacement. Propagation times are scaled to the core
frequency. Top left: t = 0. Top right: ¢t = 5. Bottom Left: ¢ = 10. Bottom

Right: ¢ = 100.

It is important to note that this Fourier linearization of the wave motion results
in behavior that is consistent with the Schwarz model, as that is the seminal paper
for understanding such vortex motion. In performing these simulations, we learn
that we have an understanding of this slow branch of vortex motion. However, it
must be remembered that we can still only specify the position of the vortex; the
velocity field cannot be independently controlled. Another important question
to ask, however, is how will our linearized model, which only considers the slow

branch, respond to an arbitrary boundary condition in time?
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Since we are ultimately concerned with the dragging of the vortex tip across
the substrate, which will produce wave agitation on the core, we proceeded by
invoking multiple boundary conditions in time for the vortex tip and trying to
control one, and then two dimensions of the vortex tip motion, again using linear
Fourier analysis. What we learned from these simulations is that one may con-
trol only one dimension of motion at a time. The other dimension of motion is
required to be free in order for the vortex to deal with the repercussions of the
motion being controlled in a single dimension; if the x-component of the vortex
tip is controlled, then the y-component must be free in order to deal with the x-
component manipulation, lest no solution exist at all. We performed simulations
for sawtooth, Gaussian, triangle, and square waves in one dimension of motion
using linearized Fourier analysis on the slow branch of the dispersion relation,
and observed behavior that is consistent with what we expect from the Schwarz
model. This exercise was useful because it demonstrated that a time-dependent
disturbance at the vortex tip is indeed capable of propagating Kelvin waves up
the core that we may understand using the local induction approximation and lin-
ear Fourier analysis. If one needs to know the exact behavior of the uncontrolled
dimension of motion, it can be analytically solved for, resulting in Equation 1.7
provided below (See Appendix A for derivation):

Given some x(t), the resulting y(t) is given by:

y(t) = lim* [* x(t — )z ds (1.7)

Lastly, since we will eventually be looking to these Kelvin waves as a means
of understanding energy dissipation in our system, it is important to understand
just how much energy is associated with a vortex that has been distorted from
equilibrium. This result has already been formulated in papers addressing Kelvin

waves in bulk *He. Given a Kelvin wave disturbance of wave number k and
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amplitude 7, the resulting total linear energy density on the core is given by [9]

Be = o2 k22 (In () + 1) (1.8)

where ¢; ~ 1.

1.6 Kelvin Wave Heating Model

As mentioned previously, Anand Swaminathan conducted many studies with
the goal of trying to understand the mechanisms behind these anomalous free
decays. By testing various models and solving for their corresponding theoretical
free decay curves, he arrived at the conclusion that none of the models could
accurately fit the anomalous free decay data, and that another fitting parameter
would be needed; there was a lack of ability in fitting the curve of the bump in
the “bulge-like” behavior while simultaneously meeting the kink point of the data.
From this it was concluded that connecting the drag force to the critical velocity
at which the vortex is depinned is too simple a model to describe the underlying
physical processes in the system.

Ultimately, Anand Swaminathan’s primary conclusion was that in order to ac-
curately fit the data, there needed to be two critical velocities involved in the
theory. His idea was the following: when the third sound flow reaches a critical
velocity, ve_coq, the Magnus force depins the vortex from a defect in the substrate.
The vortex then proceeds to drag along the substrate, dissipating energy. How-
ever, this dragging along the substrate is not just a simple static drag dissipating
a linearly proportional amount of energy. This dragging is in fact a dynamic
process, and the very dragging along the subtrate generates wave disturbances
(Kelvin waves) on the vortex core that propagate away from the substrate. This
disturbance then travels up the vortex core, reflects at the surface of the thin film,

and propagates back down the core. This reflected wave results in an agitation of
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the vortex, or heating, that makes it more difficult for the vortex to repin to the
substrate. When the third sound flow oscillates back down below the depinning
critical velocity, it in fact does not repin until a critical velocity lower than the
original depinning one, v._por < Ve—coid, due to this agitation and heating. Even-
tually, it repins to the substrate at this lower critical velocity, where the vortex
agitation created by the dragging dissipates fully in the time between pinning and
the beginning of the next cycle of third sound flow, and the process repeats itself.
Time scales can be seen to be to be adequate for such relaxation in between cycles
by simply considering the group velocity of the slow branch associated with the
lowest quarter-wave mode of motion (.1 m/s for a film height of nanometers), and
comparing it to the period of third sound oscillations, which is on the order of
milliseconds.

Motivated by experimental |6] and theoretical 10| results in the literature,
Anand Swaminathan proposed this “Kelvin Wave Heating Model” as a possible
explanation for the need for two separate critical velocities. It is the development
of a quantitative model of vortex “heating” that can explain the anomalous free

decays that we concern ourselves with throughout this thesis.
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Ch.2 Vortex Heating and Depinning

2.1 Kelvin Wave Agitation

In Section 1.6, the concept behind the Kelvin Wave Heating Model was detailed.
In this section, attempts are made to quantitatively describe vortex agitation that
is induced by dynamic interaction with the substrate in order to test whether this
agitation could result in a plausible reduction of the cold critical velocity, ve_coq,
to some lower critical velocity, v._p.. We proceed by considering the reflection
coefficient that the change in geometry from vortex core to open surface would
create, and use the calculated reflected Kelvin wave amplitude to determine what
magnitudes of effective temperatures could be generated on the core by imple-
menting the Planck distribution. Additionally, a model is developed relating the
slope change of the vortex core at the defect boundary, resulting from a reflected
Kelvin wave, to a reduction in the critical velocity.

Prior to the development of these models, Figure 2.1 is presented as a visual

reminder of the qualitative ideas that will be put together in this chapter:
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Figure 2.1 - Quantized vortex on a substrate.

In Figure 2.1, one can imagine a quantized vortex dragging along a substrate,
generating Kelvin wave disturbances that propagate up the core and out onto the
surface of the thin film (the wave modes on the thin-film surface are known as
ripplons [3]), with the change in geometry of the vortex core causing a reflection
of a portion these disturbances back down the core. It should be noted that an
actual quantized vortex does not have the precisely defined shape that is depicted
in Figure 2.1. Vortex geometries are determined using classical models, and do
not take into account the uncertainty principle. One should therefore imagine the

vortex in Figure 2.1 as a quantum fuzz taking that approximate classical shape.

2.2 The Reflection Coefficient

In order to develop the models and ideas mentioned in Section 2.1, we must
have some concept about the amount of agitation reflected back down the core
compared to the amount propagated outwards onto the surface as ripplons. To
solve for this reflection coefficient precisely, one must solve the exact hydrodynamic
problem which, at present, has eluded us (see Appendix B for more discussion).
In an attempt to approximate the reflection coefficient a vortex might exhibit, we

decide to neglect the hydrodynamic details and solve for the reflection coefficient

17



associated with only the change in geometry of the vortex core’s surface. The
analytical solution to the wave motion on the surface of the thin film is known,
and we use 4th-order Runge Kutta numerical integration to integrate down the
core and back to the site of the incident wave. In our calcuation we assume a flat
surface and cylindrical core with a fixed local gravity g. From the solution of the
wave motion on the surface, and at the site of the propagation of the disturbance,
we deduce reflection and transmission coefficients associated with the change in
geometry of the vortex surface. The equations of motion derived, integration
strategy, geometrical reflection coefficient deduction, and general conversation re-
garding the reflection coefficient can be found in Appendix B.

As one would imagine, the geometrical reflection coefficient is going to be pri-
marily dependent on the exact form of the vortex geometry that we choose to
perform our calculations on. Intuitively, if the transition from core to surface
is very rapid, one could take this to the extreme limit of a traveling wave inci-
dent against a classical wall, and would expect a very large reflection coefficient.
Constrastingly, if the geometry of the vortex is such that the expansion occurs
gradually from very near to the pinning site, then the change in geometry is much
less sudden, and one would predict a negligible reflection coefficient.

Fortunately, the issue of vortex geometry is a topic that has already been
dealt with in the history of the Quantum Fluids Laboratory. In 1992, laboratory
member Oliver Ryan derived, in his senior thesis [11], the energy and geometry of
a superfluid film vortex. This derivation included the effects of kinetic energy due
to the rotating fluid, potential energy due to Van Der Waals interactions with the
substrate, and surface energy terms. The resulting vortex (Figure 2.2) consists
of a very rapid change in geometry, which, intuitively, we expect to result in a

significant geometrical reflection coefficient.
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Figure 2.2 - Thin-film vortex geometry as calculated by Oliver Ryan. Note: scale

1S in nanometers.

When the procedure described in Appendix B is performed using Oliver Ryan’s
geometry, one calculates a reasonably large reflection coefficient of R = 53% for
the lowest frequency, quarter-wave, mode of the system (See Figure 2.6). This is
a significant reflection coefficient, implying that a large amount of the propagated
energy will be reflected back down the core and result in core heating. However,
one cannot take this reflection coefficient too seriously, as it completely ignores
the hydrodynamic details of the system. Yet another failure of the model is that
it assumes a constant local gravity on the core length, which clearly cannot be
true. Work was done to try to incorporate a position dependent local gravity into
the simulation, but was ultimately met with failure.

Since we cannot solve the exact hydrodynamic problem, we are unable to de-
termine the exact reflection coefficient, and cannot make any strong conclusions
regarding the precise amount of agitation retained on the core. However, the
rather rapid change in the geometry calculated in Oliver Ryan’s thesis suggests

that the reflection coefficient should indeed be non-negligible, due to geometrical
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considerations alone. If a solution to the mathematical problem of the reflec-
tion coefficient could be found, it would be a great step in speaking quantitatively
about the retained agitation in the system. However, much important information
can still be gleaned by using an arbitrary reflection coefficient, R, as a parameter,
and continuing with the development of the Kelvin Wave Heating Model that was

proposed. This is precisely what will be done in the following sections.

2.3 Effective Planck Temperature

Previous work has been done in the Quantum Fluids Laboratory studying the
temperature dependence of dissipation in third sound free decays [12|. Studies
were performed where the theory of third sound dissipation involved an Arhennius-
type barrier to the thermally activated depinning of quantized vortices on the sub-
strate. In these studies, previous researchers were able to correlate the likelihood
of a vortex depinning to the strength of the background flow, as well as an effective
temperature of the vortex away from thermal equilibrium, which was built into a
Boltzmann factor. These studies concluded that, by implementing this model, an
effective vortex temperature of .95 K was associated with a vortex’s depinning.

In the Kelvin Wave Heating Model, Kelvin waves are propagated up the core
due to the interaction of the vortex with the substrate. One could conceivably
link the amplitudes of these generated Kelvin waves to a thermally induced root-
mean-squared deviation from the core equilibrium by comparison to the Planck
distribution, resulting in an effective temperature of the vortex away from equi-
librium. In the rest of this section, we develop a model for vortex tip interaction
with the substrate, determine the amplitudes of Kelvin waves generated on the
vortex core resulting from this model, and calculate the effective Planck distri-
bution temperature associated with these Kelvin wave amplitudes with the hope
of generating temperatures on the order of 1 K that have been found in previous

studies.
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We begin with a very simple model for the motion of the vortex tip in order
to provide a general idea of what kinds of magnitudes of disturbances are being
propagated up the core by interaction with the substrate. Our model is the
following: Assume a vortex is pinned to a defect site. The third sound flow then
increases to the point that the Magnus force depins the vortex core at a yet to
be determined cold critical velocity. The vortex tip then proceeds to move across
the substrate at the speed of the background flow, vs, where after a time, 7,
the third sound flow decreases below the cold critical velocity, and the vortex
abruptly repins to the next defect on the substrate, a distance A\ away from the
previous pinning site. If the reader is concerned that this model does not explicitly
incorporate a v._po, this issue will be addressed in Section 2.4. See Figure 2.3

below for a graphical representation of this model.
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Figure 2.3 - Velocity versus time plot of the motion of the vortex tip.

We describe this model mathematically by Equation 2.1
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v(t) = { 0 0<t<3  and Z-I<i<Z , (2.1)

v T AT
s 2<t<vu 3

where Equation 2.2, below, is the condition required for the model to be self-
consistent (requiring that the vortex moves at an average speed of v, over the

whole time interval 7 + %)

T=AE+-21) (2.2)

We proceed by Fourier analyzing the vortex tip motion and determining the
Fourier coefficients associated with its designated velocity conditions. Performing

a Fourier decomposition of Equation 2.1 results in coefficients of

oo® — %sz’n(%) in=1,2,3, .. (2.3)

corresponding to a reconstruction of v(¢) in terms of an infinite sum of cosine

functions

o

v(t) =3, ancos( L) (2.4)

that can be integrated with respect to time to yield the corresponding position

reconstruction of the motion of the tip relative to the mean vortex position

(1) = X g mm nsin(257) (2:5)

Combining Equations 2.3 & 2.5, and rewriting the maximum amplitude of the

nth Fourier mode results in the expression
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T = gy-azmz Vs STn( 57T (2.6)

Equation 2.6 allows one to calculate an amplitude of wave motion, 7,, prop-
agated up the core associated with our model for vortex motion depending on
the critical velocity, v., vortex velocity, v,, and distance between pinning sites, .
At present, our model generates wave disturbances of a particular amplitude, 7,,
that will propagate up the core from the resonator surface. Based on our previous
discussion, and the literature [10], we have reason to believe that these distur-
bances will be Kelvin waves and will obey the dispersion relation of Equation 1.6.
Additionally, it is useful to note that associated with this Fourier amplitude of
wave motion pumped up the core, 7, there is a Fourier frequency (or Kelvin wave

frequency), wpumped, given by:

Wpumped = 21)13\7” (2 . 7)

It should quickly be mentioned that in our system it is desirable to have a
means of coupling the Kelvin waves on the vortex core with the ripplons on the
surface of the thin-film. Therefore, we have rederived Equations 1.6 and 1.8' to
include a surface tension term + , which for superfluid “He is 3.54 x 10_4%, that
allows us to more coherently couple the wave motion on the core with the wave

motion on the surface of the thin film:

wh(k) = & (-1 T \/(1 + L) (14 F(ka)2)> (2.8)

and

B — e (1 (2) - - ) 29)

1Private Communication F. Ellis
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where I' = (27)* 5.

Using the dispersion relation for the slow branch of a Kelvin wave (Equation
2.8), Wpumpea can be converted into a Kelvin wavenumber kpympeq. We can then
use Equation 2.9 to calculate the energy associated with a given Kelvin wave
disturbance, 7), and wavenumber, k. This provides us with a value for the amount
of energy pumped up the core, Ejmped , by a Kelvin wave associated with a
disturbance propagating upward from the substrate due to our vortex tip motion
model.

Next, we invoke our reflection coefficient parameter and state that some fraction
of the energy pumped up the core, R, is going to be reflected back from the change

in geometry of the vortex core surface:

EReflected =R x Epumped (210)

and use Egefiectea and Equation 2.9 (under the assumption that the wavenumber
does not change upon reflection) to reversely calculate a reflected amplitude of

the Kelvin wave, Nge ficcted-

We have now determined the reflected wave amplitude associated with our
velocity model and reflection coefficient. We wish to turn this into a thermal rms
amplitude deviation associated with some effective temperature of the vortex core,
T. We use the standard form of the Planck Distribution, n, [13], and define the

rms amplitude fluctuation as:
2
<P >q=Eng= —m— (2.11)
ekBT —1

where 773 can be found by rearranging Equation 2.9, E, = hw,, and kg is
Boltzmann’s constant (Note: the notation of wavenumber has changed from k& — ¢

to avoid confusion with Kelvin and Boltzmann notation).
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Using the scaling 7, = 2ra?kpT/hk, x = qa, and letting L = hg, where we say
the vortex extends the height of the thin-film, hy, Equation 2.11 can be rewritten

using the integral approximation:

\/(1+ e (14Tw) -1

S, = [ ! 1 2.12
77 plih() :c\/ln(%)—’y—% \/<1+m)(1+1‘*12),1 ( )

Ky (@)
e Tk —1

One can then find the roots of Equation 2.12 to determine the value of the scaled
effective temperatute, 73, associated with 7Ngefiecteqd- Using the parameters of our
model (distance between pinning sites, critical velocity, and reflection coefficient),
we can estimate the effective Planck distribution temperatures generated by our
vortex moving from one pinning site to another. A sampling of results are provided
in Figure 2.4 and Figure 2.5.

We find that the reflection coefficient results in having an effect on the gener-
ated effective temperature approximately linearly associated with its magnitude
(a reduction of the reflection coefficient by 20% results in a reduction of the ef-
fective temperature, 7', by approximately 20%). One also discovers an increase in
the effective temperature, T', associated with an increase in the distance between
defect sites, A. This result is due to the fact that the farther the vortex travels
between pinning sites, the more weight will be give to the lowest mode of the
Fourier decomposition, and consequently larger amplitudes of Kelvin waves will

result from larger distances between defect sites.
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Effective Temperature vs Length Scale
vy = .07 ?=R = 50%
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Figure 2.4 - Effective Temperature vs Length Scale () plots with a reflection
coefficient of 50%.
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Effective Temperature vs Critical Velocity
A =100 nm, R = 50%

01

0.001 |

Temperature (K

w3 E

1 1 1 1 1 1 1 1 1 1 n 1
0.00 0.02 0.04 0.06 0.08 0.10

Critical Velocity f_? )

Figure 2.5 - Effective Temperature vs Critical Velocity plots with a reflection
coefficient of 50%. Note: the discontinuities and decreasing values of the
temperature in the Fourier modes are merely a result of resonance in the Fourier

analysis, and do not represent physical phenomena.

While not quantitatively rigorous, when one selects values of the model’s pa-
rameters derived from physical expectations (v, = .01 —.17, A = 1 nm - 100 nm),
this model is capable of generating Boltzmann temperatures in line with what
was witnessed in previous Quantum Fluids Laboratory experiments. However,
one must understand that the critical velocity is really the only parameter that
can be narrowed down into any confident range, as determined by previous Quan-
tum Fluids Laboratory experiments. The length scale parameter is undoubtedly
highly variable, and unknown without experimental analysis from a technique like
scanning electron microscopy. Similarly, we do not know enough about the value

of the reflection coefficient, due to the neglect of the hydrodynamic details, to
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place it in any reasonable range. Regardless, by approximating many of these
physical parameters, we can see that perhaps the Kelvin Wave Heating Model is
capable of providing some insight into the mechanism of these previously studied
thermal barriers to depinning. While this model is not as rigorous as one would
like, it does suggest that dynamic vortex interaction with the substrate could be
an important phenomenon in these experimental systems. Deriving a more rigor-
ous model for vortex interaction with the substrate (perhaps using the model that
will be developed in Chapter 4), and applying it in order to get a more definitive
determination of the effective Planck distribution temperature that could be com-
pared with .95 K, could prove to be an interesting project for a future Quantum

Fluids Laboratory student.
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2.4 Reduction of the Critical Velocity

Before moving on from this model of dynamic vortex interaction with the sub-
strate to something more sophisticated, it will be informative to see how one can
use this model to induce a reduction in the critical velocity, as well as to generate
the actual vortex dynamics resulting from Kelvin wave heating. From the Schwarz
paper [5], it is known that every quantized vortex must obey a boundary condition
such that the vortex intersects a surface orthogonally. If one considers a simple
spherical pinning defect on the substrate (Figure 2.6), then one can see that if
there is Kelvin wave agitation on the vortex core, there is only so much leeway
that a vortex has to deal with a geometrical distortion before it is necessarily

required by its boundary condition to detach from the defect site.

he

Figure 2.6 - A vortex pinned to a defect site trying to meet its boundary

condition. Note: not drawn to scale.

If one narrows one’s view down to the defect site and uses Newton’s Second

Law to balance the Magnus force (pinning force at the critical velocity) on the
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vortex with the parallel component of the vortex line tension, one can determine

the slope of a vortex (with no wave agitation) locally around the defect site to be

AThVe_ o
So — W{%}M (213)

where a is the radius of the vortex core, and b is the radial extent of a vortex’s
circulation. Observing the vortex very locally like this is a crude model, but it
provides us with a fast and simple means of estimating what we are seeking. A

more sophisticated model will be developed in Chapter 3.

Now that we have a value for the unperturbed slope, we take our 7gefiected
disturbance, and associate with its amplitude and wavenumber a change in the

slope of the vortex:

AS = qpumpeaneflected (214)

We assume that given some Kelvin wave agitation, the vortex will be less likely
to pin, i.e. the critical velocity will be decreased. Therefore, as a rough model,
we associate with our disturbance, As, a simple linear reduction in the critical

velocity given by:

Ve—hot = (1 - E)Uc—cold (215)

S0

Equation 2.15 says that given some disturbance, our original critical velocity
will be reduced by an amount linearly proportional to the disturbance on the
vortex core related to how “difficult” it is now for the vortex core to meet its or-
thogonal boundary condition with the substrate. sg is the value of the unperturbed
equilibrium slope of the vortex near the pinning site, and is thus implemented as
a characteristic value for slope magnitudes in this system that serves as a refer-

ence point for the slope change in Equation 2.15. There is no physical basis for
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choosing a linear reduction; it is merely the simplest possible form that will result

in a reduced critical velocity.

2.5 Self-Consistent Dynamics

Since we now have a means of expressing the reduction of the critical velocity,
it will be interesting to calculate the resulting modified vortex dynamics. We are
particularly interested in the relationships among v, v,, and v., and require the
magnitude of the velocity of our vortex given by Equation 1.5. Therefore, we use
the Pythagorean theorem to modify Equation 1.5 to deal with only the magnitude

of the vortex velocity:

| vy |= V2 — 02 (2.16)

Using Equations 2.13, 2.14, & 2.15, and solving self-consistently with Equation
2.16, one cannot derive an analytic expression relating v, v,, and v.. Therefore,
we approach the problem in a numerical fashion to determine these relations. We
assume an oscillatory third sound flow of the background superfluid, vs. We then
guess a value of the vortex velocity, v,, and calculate the critical velocity using
Equation 2.16, calling that value v._;pitia- Then we use the model described in
Section 2.3 to determine an 7ge fiected (using our guess for v, ), and utilize Equations
2.14 & 2.15 to reduce the critical velocity by some change in the slope due to
the Kelvin wave disturbance, ngeficcted, resulting in a calculated critical velocity,
Ue— final- Finally, we compare our initial and final critical velocities. If they differ
by more than a given tolerance, dconvergence, then we guess a different starting v,

and repeat the procedure until our convergence condition is met:

Uc—initial — Ve— final |< 6convergence (217)
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This procedure must be performed for all values of the superfluid flow, vy, in
order to develop a total picture of the vortex dynamics at all the values of the
superfluid velocity in a third sound oscillation. The results of these simulations

are provided in Figures 2.7 & 2.8.

Vortex Velocity vs Third Sound Flow Velocity
R=1{0%—1%—5%—-10% —20%}. A =10mm. n =1, vo_cs =005 &
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Figure 2.7 - Plot of vortex velocity (v,) vs third sound flow velocity (vs) for

different values of the reflection coefficient.
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Vortex Velocity vs Background Flow Velocity
R=1%.A={1mm, 10 om, 100 nm}, n =1
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Figure 2.8 - Plot of vortex velocity (v,) vs third sound flow velocity (v) for

different values of the length scale .

Figure 2.7 and 2.8 clearly show a reduction in the critical velocity when com-
pared to the static drag dynamics (R = 0% - the blue curve in Figure 2.7). In the
case of a reflection coefficient of 0%, all of the agitation is transmitted out of the
vortex core, no heating occurs, and the solution is simply that which is expected
from Equation 2.16. If the reflection coefficient, or length scale, is increased in
value, we see that the steady state solutions to the vortex motion result in a
repinning at a much lower critical velocity than when it was depinned, i.e. the
lowest value of vy in Figures 2.7 & 2.8 at which a solutions still exists, for a given
curve. It is important to note again that these are the steady state solutions to
the vortex motion (which is the condition of Equations 1.5 & 2.16). In Figures
2.7 and 2.8, the simulations run with nonzero reflection coefficients have no solu-

tion for some values of the superfluid flow velocity. Clearly, a vortex cannot have
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a nonzero velocity and suddenly repin to the bump and be motionless, with no
intermediate deceleration. Since these solutions are derived in the steady state, a
physical interpretation of this region where no solution exists would be that this
region is a point of hysteresis where the vortex is captured by the defect site and
exhibits hysteretic motion as it settles down into a pinned state. This process
is depicted in Figure 2.9, which is a very important figure for understanding the

vortex dynamics being discussed.
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Figure 2.9 - Modified vortex dynamics. The vortex depins at v._ .4, transfers to

path 2, travels up path 2 to the peak of the third sound oscillation, then travels
back down path 2, where it undergoes hysteretic motion when captured by the
defect site at v._po, and eventually repins. Paths 1 and 2 represent the static

and dynamic drag paths, respectively.
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2.6 Summary

In this chapter we have developed a rudimentary model for Kelvin wave heat-
ing based on a vortex moving from one pinning site to another along the surface
of a substrate. Ultimately, this model fails at being a quantitative guide to Kelvin
wave heating due to the fact that we cannot pin down the reflection coefficient
of the vortex, or the length scale between defect sites, with any reliable accuracy.
However, we do learn that given values of the reflection coefficient and the length
scale that one might reasonably guess in our experimental system, meaningful ef-
fective temperatures can be generated that corroborate results found in previous
studies. Additionally, from our slope argument, we learn that significant reduc-
tions in the critical velocity can occur due to Kelvin wave heating and, while not
rigorous, this model serves as strong motivation for developing a more complete
theory. Lastly, it is to be noted that thinking in terms of the frequency properties
of the substrate has been instructive in this chapter and is an important technique

that will be adopted as a strategy throughout the remaining chapters.
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Ch.3 Substrate Analysis

3.1 Motivation

Most information, to date, regarding the critical velocity has been derived
from experimental results. Theoretically, it has been generally believed that a
defect site (geometrical distortion) on a perfectly flat substrate provides an energy
minimum which the vortex falls into, resulting in the vortex pinning to the defect.
It would be useful to be able to relate the pinning force that acts on a vortex
to the geometrical properties of an arbitrary surface. This would allow one to
relate experimental critical velocities to the surface properties of the substrate,
and would give one some idea of the characteristics of the resonator substrate that
we are unable to measure directly. Likewise, if the exact geometry of a resonator
substrate could be specified, then one could exactly calculate the pinning force at
all points on the resonator surface.

When a vortex moves across an arbitrary surface in one dimension, the vortex
will exert a suctioning force on the surface it is moving across (think of a tornado
traveling over a cornfield, ripping corn out of the ground around its core as it
moves along its path). In a macroscopic, classical vortex scenario, this suction is
caused by Bernoulli pressure differences that result from the velocity field of the
vortex interacting with the surrounding surface geometry. We choose to model
our quantized vortex classically to determine the suction force on the substrate
resulting from this Bernoulli pressure field. We then claim that a vortex, having
zero mass, can have no net forces acting on it. Therefore, the component of the
suction force parallel to the substrate must be equal to the pinning force when

the vortex is immobilized on a defect site, and we should be able to correlate the
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geometrical properties of our surface to the pinning force (critical velocity) that

a vortex experiences on the substrate.
3.2 Surface Geometry

In getting started, it is helpful to understand the normal vector geometry of

an arbitrary surface, i.e. to come up with relations for the normal vectors of an

arbitrary two-dimensional surface, n(z,y) (Figure 3.1).

Figure 3.1 - A two-dimensional slice of the normal vectors for an arbitrary

three-dimensional surface n(z,y).

From Figure 3.1 we can deduce a relationship among the normal vectors:
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We additionally require that the “normal” vectors be normalized to unity:
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Combining Equations 3.1 & 3.2, along with the Pythagorean theorem, one can
deduce Equation 3.3.

on
Py = ——2— 3.3

Similarly, in a three-dimensional analysis, one can follow this methodology to

derive the more general Equation 3.4, where 7 and j refer to two orthogonal units

vectors that are parallel to the substrate surface:

e + jny = ——YuEw) (3.4)

1+ V)|

In addition to the normal vector geometry, we will need to understand the
relationship between the area of an arbitrary surface, dA, compared with the
perpendicular area actually exposed to the velocity field of the vortex core, dA; .

The relationships between these two areas is illustrated in Figure 3.2
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Figure 3.2 - Differential area analysis of an arbitrary surface.
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3.3 Bernoulli Pressure Integration

We seek to find, given an arbitrary surface, the total Bernoulli force exerted
parallel to the substrate at 7 due to a straight vortex core at 7. We assume
a straight vortex core, as it greatly simplifies the mathematics involved. Dealing
with the velocity field generated by a distorted vortex core would be a very mathe-
matically demanding scenario, and we just seek a rough estimation of the pinning
force. In order to do this, we must integrate dﬁ; (change of notation d?’x—> dﬁ,
the force parallel to the substrate), in order to get the total force exerted parallel

to the substrate, where

2

dF) = PdAR-i = —Lp — ' dAin - (3.5)

2P mi (

Integrating Equation 3.5 we arrive at:

2
}?” = ff _%Pﬁi?’f?(% y) (7—22_5)2-}-(7—%})2 dzdy (36)

We attack this integration via a Fourier convolution of the terms ?n(m,y)

and (7_H)Qi(7_m2, and we begin by defining a forward and backward Fourier

transformation of the substrate, n(z,y):

i(q) = & [ n(z,y)e 07 & and y(z,y) = & [ 7(q)e’ T T d?>q (3.7

It is useful at this point to mention that in performing this analysis the solution
will ultimately be intimately linked to the frequency properties of the Fourier
transformation of our arbitrary substrate. Thinking in terms of the frequency
and wavenumber components of our system was not only useful in Chapter 2, as

well as this chapter, but will also be key in the more sophisticated treatment of the
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critical velocity reduction model that will occur in Chapter 4. We continue with
our analysis by taking the gradient of the backward transformation (Equation

3.7):

Vilz,y) = £ [ Ti(@)e ™7 d2q (3.8)

We can clean up Equation 3.8 for conceptual purposes by defining:

ﬁ

G(q) =5 dn(7) (3.9)

and rewriting Equation 3.9 as:

Vi(a,y) = [ G ()T g (3.10)

Regarding the % inverse flow field term, one can see that at some point in this
analysis we are going to run into some troublesome behavior as 7 — 7. This is
expected, as in Chapter 1 we discussed how a vortex is defined as possessing a %
flow field up until the core radius, where quantitatively different behavior occurs
as 7 becomes less than ay . This is the same issue that we run into at present.

Since we are trying to define a Fourier transform of the inverse flow field term,
it is necessary that we integrate through the singularity somehow without causing
any unwieldy infinities. There are a couple of conceivable ways of doing this,
but we choose the path that allows for the cleanest analytical solution to this
integral. We introduce a “damping” term, 74, in the denominator of the inverse
flow field part of the convolution, which is approximately equal to the core radius,

ap (Equation 3.11).
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Figure 3.3 - The utility of the damping term in controlling the singularity of the
velocity field.

By introducing this damping term, we can write the Fourier transform of the
inverse flow field part of the convolution in polar coordinates, and simplify it down

to the expression

~ 7:_)'7‘ e*i_;? os[¢] '
P(d) = e 7 [ S  rdodr = TR (), (311)

where K is a modified Bessel function of order zero. For future ease, let us also

define the Fourier transform of the pressure field:

" ho(7") (3.12)

where

p(7) = [I° B( )il T 2 (3.13)
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Now, one can write out the full convolution expression:
jaf 12 = T2 (A g T g2
| = o] | [ G (D) T P f[B(q e " ¢ | dady (3.14)
zry | q q

After performing the proper algebra and integrations, Equation 3.14 can be

reduced into the form:

Fi(r) = —ip2 [[Ti(7)i(~T )% (3.15)

In evaluating Equation 3.15, we assume a simple one dimensional uniform
translation of the vortex, e = ivpt, and want to look at the frequency spectrum

of the force parallel to the substrate:

Fi(w) = o= [ Fi(ivt)e dt = — 2 p%% [ TH(DH(~T) [ €Tt diag
(3.16)

Equation 3.16 allows one to calculate the force exerted on a vortex parallel to
the substrate, or, in equivalent language, the pinning force associated with a vortex
moving in one dimension over an arbitrary surface. We seek an intuitive physical
understanding of the relationship between the parameters presented. In order to
put this equation into the simplest possible form, we choose a one-dimensional

surface with only one wavenumber present, i.e. a complex exponential function:

n(x) = moe'™” (3.17)

Choosing this form of the substrate surface results in an rms force of:
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| Fol = WP%QOUOKO(QO’M) (3.18)

A common result in thin-film superfluid studies is the relation between velocity

and force of

F =wvprhy (3.19)

which allows us to write our final result relating the critical velocity to the hori-
zontal pinning force between a superfluid vortex and a one-dimensional substrate

possessing a single wavenumber, gq, with bumps of a height 7,:

Ve—cold = W #ET,LOQOUOKO(QOW) (3.20)

This relation is significant because we now have an analytical means of relating
the arbitrary properties of a substrate to the cold critical velocity of a vortex via
the interaction of the Bernoulli pressure field of the vortex with the local resonator
surface geometry. Figure 3.4 provides a plot of Equation 3.20 using parameters
that we might expect to be associated with a resonator substrate. Note that 7
should be noticeably smaller than the film height hg in order to maintain a flat

adsorbed thin-film surface.
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Figure 3.4 - Critical Velocity vs Fourier Wavenumber. A plot of Equation 3.20
formg =3 A, v = 1.3 x 107104,

Figure 3.4 demonstrates that by plugging parameters that we believe to be
physically relevant into Equation 3.20, one can generate critical velocities that
are on the order of those that have been found experimentally in past Quantum

Fluids Laboratory experiments (v, ~ .01%) [2|. It is interesting to note that there

1

is a maximum in the critical velocity distribution which occurs at ¢ = T

corresponding to the situation where the vortex core exactly encloses one half
cycle of the oscillation of the substrate surface (A = 2v,). When the core radius
is much larger than the Fourier wavelength of the substrate surface, the vortex
flow field sees an averaged surface that appears reasonably flat. Consequently,
there are no sharp changes in geometry as seen from the vortex flow field, and
the suction is minimal. As the Fourier wavelength shrinks to be of a size scale
comparable to the core, the geometry of the surface has a much larger effect on the

suction force generated. From Figure 3.2, we understand that the effective area

1

of the surface that the core sees goes like cos[f]

. This implies that the more rapid
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the vertical change in geometry, the more area the vortex flow field “sees”, and the

more suction can be created as the amount of area being integrated over at large

1
cos|0]

values of the vortex flow field increases. At ¢a: = i, the steepeness of the
is maximized, and the suction force (critical velocity) is at a maximum. Finally,
as the vortex core gets small compared to the Fourier wavelength, the substrate
surface appears very flat locally around the core, and there are no extreme changes
in geometry, which results in a reduced suction force.

Clearly the insight that this result provides about the details of the system
relies on the premise that there is only one wavenumber present in the Fourier
spectrum of the substrate. This is not true for any typical surface. An interesting
point to note for future research, however, is the topic of monolayer self-assembly.
Many recent advances in the field of supramolecular chemistry and self-assembly
have enabled researchers to be able to pattern uniform monolayer surfaces with
specifically tailored components. This point is particularly pertinent given the
fact that our resonator substrate is gold-plated, and that there is a wealth of
metal-thiol self-assembly chemistry available in the literature [14]. If one could
control the exact properties of the substrate through self-assembly, and make the
surface completely uniform, then one could perform very interesting studies on
the pinning properties of a perfectly uniform surface, where all of the geometric,
electronic, and magnetic properties of the surface would be completely known.
This would eliminate many of the uncertainties that have been faced in the past
in these types of studies. It is here that the formalism developed in this chapter

could possibly find its greatest utility.

3.4 Summary

Ultimately, the derivation in this chapter was performed with the intent of
developing a theoretical means of relating the geometrical properties of a substrate

surface to the pinning force, or critical velocity, of a vortex on a defect site. While
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it is impossible to analytically solve Equation 3.16 for a real substrate surface
(although a statistical approach to the wavenumbers present in the frequency
spectrum of the substrate could be implemented), it is instructive to use a simple
complex exponential to qualitatively understand the effects of geometry on pinning
strength. In essence, we can conclude that the more rapid the change in surface
geometry in the region near to the core, the stronger the pinning force will be.
This corroborates the generally accepted notion mentioned at the beginning of this
chapter that geometrical defects provide energy minima that vortices are inclined
to pin to. Theoretically, one could use Equation 3.16, and experimental results, to
develop some knowledge of the frequency properties of a given substrate surface.
This formalism also possesses important possible uses for a substrate surface that
is geometrically uniform in a periodic sense, as in the situation of a self-assembled
monolayer. Again, it is to be noted that considering the problem at hand in terms

of the frequency properties of the substrate continues to be a useful methodology.
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Ch.4 Vortex Dynamics and Results

4.1 Vortex Precession and Relaxation

In Chapter 2, we developed an elementary model for vortex heating and calcu-
lated the resulting vortex dynamics. In this chapter, we use motivation from the
models of Chapter 2, as well as from the idea of thinking in terms of the frequency
properties of the substrate from Chapter 3, to develop a more rigorous means of
modeling vortex interaction with the resonator substrate.

When a vortex tip drags across the substrate, Kelvin wave agitation is propa-
gated up the core. The lowest wavenumber mode that can be propagated on the
core is the quarter-wave precession corresponding to the boundary condition that
the vortex core intersects the thin-film surface orthogonally (Figure 2.6). This
corresponds to a quarter-wave Kelvin precession frequency of w4 via Equation
2.8. We imagine a disturbance with this precession frequency, and the vortex
continuing to be dragged along the defect-ridden substrate. In an unperturbed
scenario, the vortex would be likely to pin to an energetically favorable geometri-
cal defect; however, in the perturbed case the vortex core possesses agitation and
has trouble doing so. Since the vortex tip is being dragged along the substrate,
one can associate a frequency with the vortex dragging across the bumps on the
substrate of Winteraction. ThiS Winteraction 15 €ssentially a measure of how frequently
a vortex encounters a surface defect that propagates agitation up the core. If we
model the surface very simply as a complex exponential as in Chapter 3, then
there is only a single wavenumber needed to describe the substrate: qq. If the

vortex is moving at a velocity v, then we describe winieraction as:

Winteraction = qoVy (41)
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Intuitively, whether or not the vortex is able to repin to a defect will be re-
lated to how frequently the vortex is being perturbed, compared to how fast that
disturbance can propagate away from the defect site and the vortex can settle
into an unagitated state again. If Winseraction >> w14, then the vortex will have
trouble pinning due to agitation extant on the core (Ve_pot < Ve—coia). On the
other hand, if wi/4 >> Winteraction, then the vortex will easily repin to the sub-
strate (Ve—pot & Ve—cold), as it will be able to “shake off” the agitation prior to the
excitation of the next Kelvin wave. All conversation about the “ease of repinning”

is, in more definite words, a conversation about the critical velocity of the vortex.

4.2 Steady-State Vortex Dynamics

We require a means of reducing the critical velocity of the vortex based on
the essential time scales of the system described in the previous section. One
of the simplest and most intuitive quantitative ways to describe the behavior we
seek with a mathematical equation is the following expression that is common in

dissipative systems:

_ Vc—cold
UC—hOt - 1+,L'W§ntce(;action (42)
w1/4

In utilizing Equation 4.2, we describe the reduction of the cold critical velocity
as a relaxation process involving the disturbance on the core induced by the inter-
action of the vortex with the substrate. We use w;/4 as a characteristic frequency
scale associated with the lowest quarter wave precession of a Kelvin wave in order
to provide an indication of the rate at which a disturbance propagates out of the
core and the vortex relaxes back into an unperturbed state. Describing winteraction
follows from Equation 4.1.

We seek to combine our new quantitative expression relating the time scales

involved in the relaxation of the vortex to a reduction in the critical velocity. In
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other words, we need to find a self-consistent solution with our previous equation
describing quantized vortex motion, Equation 2.16. When Equation 4.2 and Equa-
tion 2.16 are solved simultaneously, one arrives at the scaled, analytic expression

for the vortex velocity

Uci}zdd - \/_L2B\//62,Ug B 1 + \/1 - 4/62 _'_ 2/82113 + B4IU;17 (43)
where 8 = 7‘101::/2"”. This expression contains all of the information in our model

regarding the frequency properties of the substrate and the characteristic relax-

ation time of the Kelvin waves on the vortex core. It should be noted that v, is

scaled to the critical velocity (vs — —%=—).

VUc—cold

Similarly, one can deduce the expression for the scaled critical velocity as well:

v — V2 (4.4)
cocold /32024141 [1-4B2 23702+ A0l

The plots of these new expressions for the vortex velocity and the critical

velocity appear in Figures 4.1 and 4.2, respectively.
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Vortex Velocity vs Third Sound Velocity
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Figure 4.1 - Calculated scaled vortex velocity (Equation 4.3).
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Figure 4.2 - Calculated scaled pinning force/critical velocity (Equation 4.4).

What is very interesting to note here is the similarity of the vortex velocity

plot in Figure 4.1 to the qualitative behavior of the plots in Figures 2.7 and 2.8,
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because it demonstrates that our two very different ways of modeling this system
result in similar vortex dynamics. One does not need to be restricted to thinking
purely in terms of reflected waves heating the core, or reductions in the slope
as in Chapter 2, although both are instructive. One simply needs to imagine
some type of agitation affecting the core that does not allow the vortex to pin as
easily. In other words, the idea that some manifestation of excess kinetic energy
on the vortex core results in a reduced pinning is the essential theme in all of these
models, and in this chapter this concept takes the form of a time scale argument.

Again, there is the issue of solutions not existing for all v,, which is a result
of our solution being in the steady state, as in Chapter 2. Any region where the
velocity of the vortex has no solution is a place where hysteresis will occur as the
vortex is captured on a pinning site, as described previously in Section 2.4 and

Figure 2.9.
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4.3 Dynamic Drag Model

As mentioned previously, in 1991, Fred Ellis and Hai Luo published an article
[15] that suggested that the critical velocity phenomena observed in free decays
were the result of the pinning and unpinning of vortices from the resonator sub-
strate. This process, they thought, was analogous to a classical friction force and
could be modeled as such. We are ultimately interested in learning what the av-
erage power dissipated by a single vortex moving across the resonator substrate
will be, because it is our hypothesis that dynamic vortex drag dissipation is the
cause of these anomalous free decays. We assume that the frictional (drag) force
acts opposite to the direction of the vortex motion, and that the average power

dissipated can be described by:

—
Py =+ fOT Firag Uy dt (4.5)

—
where T is the period of the third sound oscilllation, and the force, f4rag, is the
pinning force that the vortex encounters as it drags across the substrate, described

by:

— .
fdrag = /JFJhOUcUu (46)

The difference between our model and calculations done previously, particularly
in Anand Swaminathan’s thesis, is that our modified model does not assume
the critical velocity v., to be constant. Instead, we can replace v, by Equation
4.4, which describes how the critical velocity changes as a function of substrate
properties 5, and the background third sound flow, v,. Similarly, we describe v,
using our newly modified Equation 4.3.

Substituting in the corresponding expressions allows one to write Equation 4.5

as:
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wh Uz,w T
Pay = "0t [T, Jop2 — 202 14 \/T— 457 1 25202 + plutdt  (4.7)

We then choose to introduce the scaling A = ni = ﬁ This greatly simplifies
matters since all amplitudes can now be scaled to the critical point (kink point)
amplitude, which can be read very easily from experimental data. A third sound

cycle oscillation can be approximated by a simple sine function:

vs(t) = A - sin(wrst) (4.8)

The average power dissipated by a single third sound cycle can be considered
as consisting of two components. The first component of the drag dissipation can
be thought of as the power dissipated from the time when the vortex depins from
its cold critical velocity v._.oq to when the background superfluid flow reaches
its peak. The second component is the drag dissipation associated with the time
frame between the peak of the superfluid third sound cycle and the repinning
of the vortex at the lower critical velocity, v._j.. The physics in both of these
cycles is the same, and they are merely separated for the purpose of making the
calculation simpler. The total power dissipated over a single third sound cycle
can be determined by summing these components of the dissipation in the time

average of Equation 4.5. These components are illustrated in Figure 4.3.
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Third Sound Drag Cycle
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Figure 4.3 - Third Sound Flow Cycle. Superfluid flow velocity is scaled to the
cold critical velocity. Blue denotes the dragging of the vortex from its depinning
at Ve_coia (Vs = 1 in the plot) to the peak. Red denotes the dragging of the

vortex from the peak to v._po (vs < 1 in the plot).

Using the scaling ¢ = wpgt , one can write the full form of Equation 4.7 for the

first component of the drag dissipation as

2 s
PEhOVE cotd 15

™ sin*l[%

Pyy = | #ﬁz \/252 — B2A2Sin2[¢] — 1+ /1 — 482 + 22 A2Sin2[¢] + FLALSind[p]dg

(4.9)

and the second component similarly as
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Pyy =

2 s
PEhOVE _ co1d ff
Ee .

Ver ot A \[262 — B2A%sin2[8] — 1+ /1 — 467 + 262 AZsin?[g] + B A sin®[g]do
¥e-hot

sin—1[

(4.10)

Equation 4.10 is dependent upon knowing exactly at what v._,, the vortex will
repin. Through some brief analysis, a closed form for determining the repinning
critical velocity, v._pot , solely as a function of 3, can be determined from the
previously mentioned equations, thereby making the bounds on the numerical
integrals of 4.9 and 4.10 exact.

Prior to proceeding, it is useful to understand the effect of the 5 term on the
power dissipated by a single vortex. This information can be found in Figure 4.4,
where we plot Equation 4.9 for different values of 5. The total average power

dissipated will be a sum of the contributions from Equations 4.9 and 4.10.

Power Dissipated vs Third Sound Amplitude
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Figure 4.4 - Power dissipated by a single vortex as a function of the scaled third

sound amplitude.
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Figure 4.4 tells us that the § parameter, which describes the agitation present
on the core due to disruptive encounters with defects on the substrate, allows one
to control the amount of energy a vortex dissipates as the third sound flow in-
creases. A rather interesting point to note is that as one goes to higher amplitudes
while at nonzero (3, one does not recover the linear drag force type of behavior
found in previous static drag models. This is undoubtedly due to the fact that
while the vortex can dissipate energy for a longer duration if 3 is nonzero, since it
is unpinned and dragging for a longer period of time, the reduction in the critical
velocity (pinning force) ultimately decreases the total amount of energy dissipated
in a third sound oscillation. While this might limit the utility of this model since
increasing ( by too much decreases the amount of energy a vortex can dissipate,
ultimately we are only discussing one vortex. There are most likely more than
just one vortex in our experimental system, so by increasing the number density
of vortices in our model we can control the shape, and magnitude, of our power
dissipation curve. This will in turn allow one to tailor the form of the free decay
curve.

Since P,y is simply the average power dissipated by one vortex over one cycle

of third sound flow, we define a total power dissipated:

W(A) =n x Pay (4.11)

where n is equal to the number density of vortices on the resonator substrate.

This W(A) can be combined with the background exponential dissipation to

produce the total energy lost in the wave

dE(A woE (A
A = W (A) - 22D (4.12)
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where wy and @)y are associated with the drive frequency of the resonator and the
background exponential dissipation in the system, respectively. )y is chosen by
fitting an exponential decay curve to the section of the free decay after the critical

point.

E(A) is the energy in the wave under the plane wave approximation, which is

twice the kinetic energy, given by

E(A) = Lphgv?A? (4.13)

2

Substituting this energy into Equation 4.12, its final form reads

(A
da — I 44 (4.14)
where we use the scaling 7 = at, a = &, v = %é, and (A) is a numerical

integral corresponding to the scaled power dissipation associated with the sum
of the two components of the drag dissipation, Equations 4.9 and 4.10. From
dimensional analysis of Equation 4.14, it becomes clear that « is some type of

rate constant and ~ is some type of scaled decay constant.

Equation 4.14 is a separable differential equation, so separating and integrating

yields:

A
T=—[ Wd/l (4.15)

This equation can then be inverted to produce a decay amplitude A as a func-

tion of 7, and this is the method used to generate our theoretical decay curves.
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In matching the experimental data to our model, we scale all of the experimen-
tal data such that the critical point (kink point) in the data corresponds to 7 = 0,
with a critical amplitude of A = 1. We then scale our time axis by the value « as-
sociated with one of the fitting parameters of our model, n. Ultimately, there are
four parameters that one can tune in order to get the best fit possible: 8, n, t..i,
and A..;;, where t..;; and A..; represent the critical time and amplitude chosen by
hand from the experimental data set. As one can see from Figure 4.5, A..;; is an
easier parameter to place precisely than t..;, as there is some ambiguity as to the
exact point of the critical time. Therefore, we fix A..;; and use a three parameter
model, allowing t..;; to be floated in the range just around the critical point that
allows for the best fit, since the exact time is hard to pin down. It should be noted
that we fit by finding the smallest least-squares value by hand since there was not
adequate time to devise a least-squares fitting routine, however the most precise
results should involve an automated fitting routine. It should also be noted that
I(A) was fit to a linear combination of polynomials in order to allow for a closed
form of the integrand that could be evaluated more quickly with computational
software.

As mentioned in Chapter 1, the model used in Anand’s thesis could not ad-
equately describe both the curvature of the decay curve and the position of the
critical point simultaneously. This is shown in greater detail in Figure 4.5, where
we see the fits resulting from the static frictional drag force (8 = 0) in Anand

Swaminathan’s thesis.
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Figure 4.5 - Decay curve results from Anand Swaminathan’s thesis [2]. There is
an inability to simultaneously match the curvature of the decay amplitude and

the critical point position.

The new results corresponding to the incorporation of the § parameter are
presented in Figure 4.6, where we fit a respresentative experimental free decay

curve.
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Representative Dynamic Drag Model Free Decay Fit

B2P117F16
TOF T
sol
E 30}
E ]
E 10F
o
£
s 'l
13 0
%
1
‘tg \‘ ot s
1.0 m‘.& A, ”‘qéd*a" “:.;.&h" .
. d "u’gﬁg“x it a3 ¥,
s ‘¥ L e 1 u.ﬁ“- 'ﬁ g
3 'é oﬁ; '}.ﬂl

Time (scaled)

Figure 4.6 - Decay curve fit resulting from the dynamic drag model. Note a
remarkably better ability to simultaneously match the curvature of the decay

curve and the position of the critical point.

Clearly, this results in an improved fit to the experimental free decay data.
In the analysis done in Anand Swaminathan’s thesis there was ultimately only
a single parameter that could be tuned in these fittings: the number density of
vortices on the substrate. Each vortex had a specific dissipation function that
could not be altered. By incorporating this  term that involves the interaction
of the vortex with the substrate, we now have a means of tuning the amount of
power dissipated by each vortex. This results in a better fit of the experimental
data.

Fits for the range of experimental data sets that we have available have [
ranging between .5 and 5, and n ranging between 2 - 106# and 5 - 107#. The

experimental apparatus used has a total surface area of 1 cm?, which corresponds

to between 2 - 102 and 5 - 10® vortices present on our resonator surface in a given
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experiment. This is well below the theoretical limit for vortex density, which
corresponds to dividing the resonator surface area by the vortex core area.

An interesting phenomenon in fitting the data is that equally good fits can be
found for many values of 8 and n. This was at first unnerving, as it implied that
there were not fitting values unique to the physical situation. However, after some
analysis we found that if one takes the ratio of g for all of the values of 5 and n
that result in good fits of a particular data set, that ratio will always be constant.
This implies that there is some interaction per vortex that is characteristic of a
given experimental system, and thus g is the parameter of physical importance.
The important physics that happens occurs when one changes § from 0 to the
lowest value that allows for an accurate fit, implying that an amount of interaction
per vortex has been reached that is characteristic of the system. Changing 8 and
n to get good fits after that point reveals no new information about the system.

While there is some slight discrepancy between the exact form of the curves
(the curvature of the decay amplitude just above the critical point is very slightly
mismatched), this new model of dynamic vortex drag allows one to simultaneously
fit the curvature of the decay amplitude and the exact location of the critical point
dramatically better than the previous static drag force model presented in Figure
4.5. It is important to note that we see this kind of accuracy in fits over a range of
data sets, which further supports the proposition of dynamic vortex drag. Other
fits are not included in this thesis because qualitatively they are identical to the
fit found in Figure 4.6, and would not provide any more useful information to the
reader. This thesis serves as an initial survey of the concept of dynamic vortex
drag and is not meant as an in-depth analysis of the experimental data we have

available, although that could prove to be an interesting future project
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4.4 Summary

Our studies allow us to conclude that dynamic vortex interaction is indeed a
physical phenomenon that must be considered when modeling quantized vortex
dynamics in thin-film superfluid *He systems. Our incorporation of the 3 param-
eter results in remarkably better fits of experimental data that has for many years
been unable to be reconciled with theory. While the previous theoretical models
of Chapter 2 allowed us to produce vortex velocity curves very similar to those
found in this chapter, ultimately our current model is superior because it presents
a more rigorous basis for discussing vortex dynamics involving interactions with
the substrate, and also provides closed forms of the vortex velocity and critical
velocity equations that allow us to more easily calculate theoretical free decay
curves. While reflection coefficients and actual “heating” is a simple way to think
of vortex interaction intuitively, ultimately the many ways we have presented vor-
tex interaction can be nicely summed up in the g term we have presented in this
chapter, which simply makes arguments based on the time scales associated with

the agitation and relaxation of the vortex.
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Ch.5 Conclusion

5.1 Dynamic Vortex Drag

Through our various simulations we have deduced that incorporating dynamic
vortex drag into our various models helps account for many of the deficiences of
the static drag model. What precisely produces this dynamic vortex drag does
not need to be specified, but we know that it is some kind of wave motion on the
vortex core induced by the pinning and unpinning of the vortex on substrate defect
sites, which results in a retained, nonzero kinetic energy on the core. Quantized
vortex cores are known to be capable of sustaining wave modes, particularly Kelvin
wave modes, and thus we believe that these are the wave modes responsible for
this dynamic interaction with the substrate. Whether we model this agitation
as a heating associated with a core reflection coefficient, a physical distortion
resulting in a change in the geometry of the vortex that leads to reduced pinning,
or simply as a time scale argument based on the interaction of the vortex with
the substrate, we arrive at similar dynamical results involving vortex motion and
reduced pinning. It is therefore important to not lock oneself into thinking of this
depinning in any one particular way, but more as a general agitation on the core.

Using our dynamic drag model, we determine that there are between 200 and
5,000 vortices present on the resonator surface in any given experiment. We have
also learned that g, the interaction per vortex, is the important physical paramater

of our model to be considered in future studies.
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5.2 Quantum Swirling

Previous studies have been performed examining the quantum swirling of vor-
tices on the resonator substrate [16]. In these experiments, there were found to be
distributions of vortices present at different radii away from the resonator center.
However, in all studies there was found to be an unexpected number of vortices
clumped near the center of the resonator. This was thought to be the result of
many vortices being generated over the entire resonator, and then pushed into
the middle as a result of the Magnus force acting on them during the third sound
flows. When trying to model this center-heavy distribution, there was a failure in
matching experimental data. The static friction drag model was incapable of ex-
plaining the extent of the clumping of vortices near the center of the resonator cell.
Dynamic vortex drag could serve as a possible explanation for this phenomenon.

In the dynamic vortex drag model, the vortex pinning force is reduced as the
vortex drags along the substrate. If the pinning force is reduced, then it will be
easier for these vortices to move along the substrate, allowing them to be pushed
closer to the middle of the resonator. This could, in turn, possibly explain the
clumping of vortices near the middle of the resonator cell. While there are many
details to be worked out in this proposition of a solution to the quantum swirling
problem, it is the logical next step in validating the theory of dynamic vortex drag

using other experiments performed in the Quantum Fluids Laboratory.

5.3 Conclusion

This thesis set out to determine whether or not the proposition of dynamic
vortex drag resulting from Kelvin wave excitations on a vortex core could help
explain heretofore unreconciled anomalous free decay data. We have implemented
dynamic vortex drag in many different forms, and have discovered that all of the

implementations are potentially capable of explaining phenomena that the static
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drag model has failed at describing. The most sophisticated implementation found
in Chapter 4 showed itself to be capable of precisely fitting and explaining anoma-
lous free decay data that have not been explained previously. We thus conclude
from our studies that dynamic vortex drag is very likely an important physical
phenomenon to be considered in thin-film superfluid *He systems. The next logi-
cal step in the application of the dynamic drag model is in attempting to explain
quantum swirling phenomena described in the previous section, as an effective
application of this model to an entirely different experimental phenomenon would

help to put the proposition of dynamic vortex drag on solid ground.
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Appendix A - A Generic Fourier Problem

Given the boundary condition x(t) on the vortex core tip, find the function
y(t) in the expression below using only the slow branch of the dispersion relation,
i.e. neglect all negative frequencies (frequencies that travel with the circulation)

in the Fourier Analysis

x(t) +ay(t) = 2\/%_” I3 9(w) - e tdw (A.1)
where
g(w) = \/% IS a(t) - et (A.2)

Use a carefully defined 6 function (step function):

z(t) +iy(t) = 2\/% 75 0(w)g(w)e ™ dw (A.3)
with
Olw) = 5 [ Cdt A — 0+ (A.4)

Substitute all known expressions
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z(t) +iy(t) = 2\/% I (ﬁ I ‘; ~ ds) (ﬁ ffooo:c(u)ei“"“du) e “tdw A+ 04 (A.5)

Use the expression

[ etterumedy = 278 (s + u — t) (A.6)
p(t) +i-y(t)=L [ L8905 X - 0+ ¢ (A7)

Proceed by carefully evaluating the limit:

x(t) + iy(t) = % ffooo x(t —s) s;f/\kz ds = z(t) — % ffooo z(t — s) 2+A2 ds A+ 0

(A.8)

Resulting in the final expression for y(t)

Gaussian Example




Evaluate y(t):

1o A -3 ‘)21
y(t) = —= e 2\a) ~ds

m J—00 \/2mo2
Evaluating this integral via Mathematica yields

A —

NI

(g)zerfi (ﬁ)

where
er fi(z) = % [ e du

which can be used to evaluate the y(t) associated with a Gaussian x(t) boundary

condition in time.
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Appendix B - Geometrical Reflection
Coefficient

In this appendix we attempt to describe the reflection and transmission process
associated with a traveling wave reflecting off of a superfluid film vortex surface.
This argument is purely geometrical and includes none of the hydrodynamic de-

tails of the system.

Figure B.1 - Force balancing on a differential section of the vortex core.

We begin by force balancing with Newton’s Second Law in the radial component

of the vortex core

ov, _ (P—=Py)A _ pg(n_—ny)dpR(s)h _ gln——ny) _ 9
i Ve vy vty e (B.1)
Now doing the same thing in the ¢ component:
g — (P——P1)-A — pg(n——ni)dphis — -9 on (B 2)
ot M pdpR(s)hAs R(s) 0¢ :
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Next we can balance the volume flow rate in the system:

Area - % =v_ — vy = (v, (dpR(5)h))™ — (vr-(dpR(s)h))t + (vohds)™ — (vghds)™ (B.3)

Where the area is simply equal to dpR(s)ds.

Rewriting B.3, we can arrive at the relation

2] — v
o = e [2(R(s)or) + 5] (B.4)
Since these are traveling waves, they take the standard form of
x(t) = e'lme=«h) (B.5)

So we can integrate Equations B.1, B.2, and B.4 and combine them to arrive at

the expression

—iwn = 5 | 2 (R(s) £ 5 + im(2 m)| (B.6)

Assuming that g has no s dependence, one can rewrite Equation B.6 in the

following form

92 R'(s) 9 m? _
58 T R(s) Crian (k2 - R(s)2> n=0 (B-7)
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where k? = ;’—2. Using the relation that

and assuming letting a = 1, we can write down the final form of the differential

equation describing the dynamics of our system:

2 '(s m?
L/ l;((s))% n (qg +m(1 - RW)) n=0 (B.9)

Equation B.9 is the differential equation that governs the dynamics of the

system for an arbitrary geometry, R(s).

4

Figure B.2 - R(s) vs s for a given vortex core.

We wish to know the solution to this equation along the whole extent of the

core. We are already aware of what the solutions are to the surface waves at large
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s values. They are given by traveling Bessel Functions, but for s >> m, reduce

down to the form

(B.10)

Equation B.9 is construcucted specifically so that when s gets very negative,
(i.e. the core radius is constant), you essentially just have simple harmonic motion
on the core. Since we wish to know the amplitudes, and not just the types, of waves
associated with this system, we use 4th order Runge-Kutta numerical integration
to develop a solution to 7(s) for all s.

Once the solution to n(s) is known for all s, or more importantly at the surface
of the vortex and on the straight core length, one can then go about determining
a reflection coefficient through a comparison of the amplitudes of the incoming
(core) and outgoing (surface) waves through simple complex analysis. A simple
means of doing this is by plotting the real and imaginary components of 7(s) on
the x and y axis, respectively. If there is no reflection, then plotting the data
this way should result in a perfect circle, because the amplitude of the wave has
not been influenced by the geometry of the vortex. However, if reflection does
occur, then the data should show the circle deforming into an ellipse, where one
can determine information regarding the reflection coefficients from the length of

the major and minor axes of the ellipse.
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