
Wesleyan University The Honors College

Forbidden Pairs Make Problems Hard

by

Eli Fox-Epstein
Class of 2011

A thesis submitted to the
faculty of Wesleyan University

in partial fulfillment of the requirements for the
Degree of Bachelor of Arts

with Departmental Honors in Computer Science

Middletown, Connecticut April, 2011

Acknowledgements

First and foremost, I thank my thesis advisor, Professor Danny Krizanc. As my

thesis topic mutated from what it was to what it is, you were always supporting

and encouraging my curiosity. Thanks for tirelessly proofreading and discussing

my ideas. I also thank Professor Eric Aaron and Professor Jim Lipton for their

advice over the past four years and their feedback on my thesis.

A big thanks to my roommates, friends, and neighbors for putting up with me.

Thanks for providing distraction when needed, keeping it quiet, listening to me

ramble, and being ridiculously supportive. Special thanks to Qianqian for great

feedback, constant encouragement, and keeping me fed.

I thank my parents for unending support, encouragement, and inspiration for

the past 21 years. Their wisdom, sensible advice, and high expectations made

this thesis possible.

Thank you, dear reader, for taking interest.

ii

Abstract

This thesis introduces a decision problem in graph theory that we call the for-

bidden pairs problem by generalizing from similar, more specific prior work. We

focus on the following decision problems: given a graph property, a graph G, and

a set F of pairs of vertices (or edges) from G, can we find a subgraph of G that

has the property subject to the condition that no two of its vertices (or edges)

form a pair in F?

Our main result proves that for many graph properties, such as cyclic and

nonplanar, that are described by their members necessarily having specific minors,

the corresponding forbidden pairs decision problems are NP-complete.

Additional results determine the computational complexity of more forbidden

pairs problems. Future work could more completely classify further sets of graph

properties or attempt to approximate solutions to the hard problems introduced

here.

iii

Contents

Chapter 1. Introduction 1

1. Complexity Preliminaries 2

2. Graph Preliminaries 4

3. Graph Properties 7

4. Some Important Graph Properties 8

5. Forbidden Pairs Problems 8

6. Prior Work 9

7. Outline of Thesis 11

Chapter 2. Preliminary Results 13

Chapter 3. Two Illustrative Examples 17

1. Cyclic 17

2. Matching 19

Chapter 4. Main Result 21

Chapter 5. Additional Results 25

1. Hereditary Properties are Easy 25

2. Finitely-Defined Edge- and Vertex-Ancestral Properties 26

3. Hereditary and Ancestral Optimization 26

4. Fixed Parameter Tractable 27

Chapter 6. Conclusions & Future Work 29

iv

Bibliography 30

Appendix A. Monotone 1-in-3 SAT 32

v

CHAPTER 1

Introduction

An important focus of theoretical computer science is computational efficiency.

Problems are often categorized by the efficiency of the worst-case running times of

algorithms and separated into two broad groups: those computationally feasible

and those that are believed to be infeasible. This is formalized through the notion

of NP-completeness, which categorizes a large class of problems that are believed,

but not known, to take time that grows exponentially with the size of the input.

Graph theory is an area of mathematics and computer science that provides

pure, abstract representations of countless real-world problems, such as network

simulations and road maps. These lead to a plethora of computational tasks,

many of which have been shown to be NP-complete.

Many proofs of the NP-completeness of problems use methods applicable only

to the specific problem at hand and do not generalize well. One exception to this

in graph theory is the work of Yannakakis and Lewis ([21], [16]) in which they

prove that a large swath of graph theory problems are NP-complete. In a similar

fashion, we investigate the complexity of many related problems at once.

This thesis is centered around graph problems that restrict particular choices

of edges or vertices available to demonstrate that a subgraph of an input graph has

a particular property. We study the computational complexity of these problems

en masse.

1

1. INTRODUCTION 2

1. Complexity Preliminaries

The area of computational complexity in computer science has largely focused

on NP-completeness, a concept that was introduced in [6] and [15] (which is

translated into English in [20]), and developed in [11]. The following is a summary

of the concepts from computational complexity that we use. Further information

can be found in complexity theory textbooks, such as [17] or [10].

The Turing Machine is the basis of measuring computational complexity. This

abstract machine performs computations one step at a time on an infinite tape of

memory. Turing machines capture the standard notion of computation, and are

equally as powerful as many other bases for computation.

A decision problem is a ‘yes-or-no’ question, or more mathematically, a func-

tion from arbitrary inputs to > (true) or ⊥ (false). One can classify decision

problems into various complexity classes, which are groups of problems each de-

cidable within the same time complexity.

The class P, or polynomial time, introduced in [5] and [7], is the set of decision

problems that can be solved on a deterministic Turing Machine in a number of

computational steps that grows polynomially with the size of the input.

We often reason about the complexity of problems through reduction. We

show that through a polynomial-time transformation, we can convert between

problems. For example, if we can convert in polynomial time a problem of known

complexity into another of unknown complexity, solve the result, and then convert

back to the original problem in polynomial time, then we can infer a lower bound

on the complexity of the unknown problem.

The complexity class NP is the set of all decision problems that have proofs

verifiable in polynomial time. This means that given evidence of an affirmative

1. INTRODUCTION 3

decision, known as a certificate, one can verify in time polynomial in the size of

the input that the problem should answer ‘yes’.

For example, consider the decision problem for whether a natural number is

composite. If one is given an integer strictly between one and the input as a

certificate, one could ensure that the input is evenly divided by it in polynomial

time.

This can be shown to be equivalent to those problems solvable in polynomial

time by a nondeterministic Turing Machine. If a problem can be solved by a

deterministic Turing machine, then a nondeterministic Turing machine can solve

it, so P ⊆ NP.

Intuitively, a problem is NP-hard if it is at least as computationally difficult

as any problem in NP. In other words, any problem in NP-hard can be reduced

in polynomial time to any other problem that is NP-hard. Thus, the problems in

NP are a subset of those that are NP-hard. A problem is NP-complete if it is

in NP and NP-hard.

Reduction is used to prove that a problem X is NP-hard or NP-complete. We

show that one can solve another problem known to be NP-hard with an algorithm

that solves X, allowing a polynomial amount of work to be performed to convert

between the problems. By transitivity, by showing that it is at least as hard as

one problem in NP, this establishes that all problems in NP can be reduced to

X. NP-completeness is proven by then demonstrating that a proof of X can be

verified in polynomial time.

A fundamental, open question in computer science is whether or not P = NP.

For conciseness, we say a problem is hard if it is NP-complete, and easy if it is

in P, despite the possibility that P = NP.

1. INTRODUCTION 4

One of the earliest and most important NP-complete problems is that of

boolean satisfiability, Sat. k-Sat, proved to be NP-complete for all k ≥ 3 in [6],

is the decision property of the satisfiability of a boolean formula consisting of the

conjunction of disjunctive clauses each with k literals. For example, instances of

3-Sat with n clauses have the form

(l1,1 ∨ l1,2 ∨ l1,3) ∧ ... ∧ (ln,1 ∨ ln,2 ∨ ln,3)

where each literal li,j is an element of some set of variables and their negations.

An example instance of 3-Sat is (a ∨ b ∨ c̄) ∧ (ā ∨ b̄ ∨ c).

Monotone 1-in-3 Sat (M1-3Sat) is a variation on 3-Sat that is particu-

larly useful for reductions between graph decision problems. 1-in-3 Sat differs

from 3-Sat in that all solutions must have exactly one true value per disjunction.

Monotone 1-in-3 Sat is true exactly when an an instance of 1-in-3 Sat is

true and contains no negated variables as literals. The following folklore theorem

will be useful in the following chapters:

Theorem 1. Monotone 1-in-3 Sat is NP-complete.

One proof of this theorem is provided in Appendix A.

2. Graph Preliminaries

For the most part, these preliminaries agree with those found in any standard

text on graph theory, such as [3]. An undirected graph G is a tuple (V,E) of

a set of vertices and a set of edges. We write VG and EG to be the vertices

and edges of graph G, respectively. Edges are unordered pairs and a subset of

{{u, v} | u, v ∈ VG;u 6= v}. An edge {u, v} is written more concisely as uv. The

size of a graph, denoted |G|, is equal to |VG|.

1. INTRODUCTION 5

Figure 1. An example representation of a graph, circles denote
vertices and lines show edges.

The complement of G, denoted G, is the graph with vertices VG and edges

{uv | uv 6∈ EG}.

Graph H is isomorphic to G if one can define a bijection f between the vertices

of the two graphs such that uv ∈ EG if and only if f(u)f(v) ∈ EH . Whenever

graph equality is referred to, we are actually asking if the graphs are isomorphic.

Two vertices u and v in a graph are adjacent if the graph contains the edge

uv. Two edges in a graph are adjacent if they share a vertex. A vertex is incident

to each edge containing it. An endpoint of an edge is one of the vertices in the

pair. The degree of a vertex is the number of edges incident to it. The maximum

degree of a graph is the the maximum of the degrees of all vertices in the graph.

A path in a graph is a sequence of vertices such that each is adjacent to its

successor, if present. Two vertices are connected if there is a path between them.

A graph is connected if each pair of vertices is connected. A cycle is a path whose

first vertex is its last. A simple path is a path with no duplicate vertices and a

simple cycle is a cycle with no duplicate vertices.

H is a subgraph of G (denoted H ⊆ G) if VH ⊆ VG and EH ⊆ EG. In this

instance, G is a supergraph of H. H is an induced subgraph of G if EH = {uv|u, v ∈

VH , uv ∈ EG}. Subgraphs and induced subgraphs are not considered to be strict;

graphs are subgraphs of themselves.

1. INTRODUCTION 6

A graph containing an edge between each pair of distinct vertices is complete.

A complete graph with m vertices is denoted Km. The complement of a complete

graph is an empty or null graph, denoted Km if it has m vertices. A complete

subgraph is a clique and a null induced subgraph is an independent set.

The components of a graph is the set of largest possible subgraphs such the

vertices in each are pairwise connected. A component is k-connected if one can

delete any k−1 vertices without splitting the component into multiple components.

A component is k-edge-connected if one can delete any k−1 edges without splitting

the component into multiple components.

A subdivision is an operation on an edge uv that creates a new vertex w,

deletes uv, and adds edges uw and wv. A graph H is a subdivision of G if one can

subdivide an edge in G to produce H or another graph of which H is a subdivision.

In other words, H is a subdivision of G if it is in the closure of the edge subdivision

applied to G. The action of undoing a subdivision is smoothing.

An edge contraction is an operation on a graph that collapses two adjacent

vertices. If u 6= v are adjacent vertices, we can contract on uv by taking the

subgraph induced by VG − {u, v}, adding a new vertex w, and adding the edges

{wx | vx ∈ EG ∨ ux ∈ EG}.

G is a minor of graph H if one can perform some number of edge contractions

on a subgraph of H to obtain G.

The disjoint union of a set S of graphs is a new graph defined by(⋃
s∈S

Vs,
⋃
s∈S

Es

)
.

1. INTRODUCTION 7

3. Graph Properties

A graph property Π is a function from graphs to {>,⊥}. When Π(G) = >, we

may write ‘G satisfies Π’, ‘G ∈ Π’, ‘Π(G) holds’ or just ‘Π(G)’. We also refer to

a property as the set of graphs {G | Π(G)} when convenient. The graph property

decision problem takes as input a graph and a property and asks if that graph

satisfies the property. We refer to this problem when saying that a property can

be recognized in a graph. The subgraph property decision problem asks if the input

graph contains a subgraph with the property.

A property Π is trivial if finitely many graphs do or do not satisfy Π. The

complement of a property Π, denoted Π, is the set of all graphs not satisfying Π.

Let S be a possibly infinite set of graphs. From this, we can define 6 properties,

each characterized by S. We say S is the set of characteristic graphs for each

property.

A property is edge-hereditary, vertex-hereditary, or minor-hereditary if each

graph in the property has no characteristic graph as a subgraph, induced subgraph,

or minor, respectively.

A property is edge-ancestral, vertex-ancestral, or minor-ancestral if each graph

in the property does have a characteristic graph as a subgraph, induced subgraph,

or minor, respectively.

Note that the complement of a hereditary property is ancestral. To specify

which properties we intend, we write characteristic subgraphs, characteristic in-

duced subgraphs, or characteristic minors. Edge-hereditary properties are closed

under subgraphs, vertex-hereditary properties are closed under induced subgraphs,

and minor-hereditary properties are closed under minors.

If there are finitely many characteristic graphs for a property, it is finitely

characterized. Otherwise, it is infinitely characterized.

1. INTRODUCTION 8

4. Some Important Graph Properties

A graph is bipartite if its vertices can be partitioned into two independent

sets such that each vertex is in one or the other. A bipartite graph is complete

if it contains all edges possible without invalidating the bipartite property. We

denote complete bipartite graphs as Km,n if one independent set has m vertices

and the other has n. Bipartiteness is vertex-hereditary. A star, denoted Sk, is the

complete bipartite graph K1,k. S3 is known as a claw.

A graph is planar if it can be embedded on the plane. It is well known that

planar graphs are those containing no subdivisions of K5 or K3,3. Planarity is

edge-hereditary.

A graph is acyclic if it does not have a cycle as a subgraph. This property is

edge-hereditary.

A graph is biconnected if one can delete one vertex and its adjacent edges and

the graph remains connected. Biconnected graphs are cyclic.

The subgraph recognition problem for each of the above properties can be de-

cided in time polynomial in the size of the input graph. There are many properties

for which deciding the subgraph recognition problem is known to be NP-complete,

such as Hamiltonian, which is the set of graphs that contain a cycle including every

vertex exactly once.

5. Forbidden Pairs Problems

Informally, we wish to see if a given graph has a subgraph that has a property

and does not violate a number of constraints on its edges or vertices. For example,

one might wish to see if there is a cyclic subgraph subject to the constraints on

which vertices can be simultaneously in a cycle.

1. INTRODUCTION 9

Let G be a graph, F any subset of VG× VG, F ′ any subset of EG×EG, and Π

a graph property.

The forbidden vertex pairs problem, FVPΠ(G,F), is true when:

(1) There exists an H ⊆ G with Π(H).

(2) VH × VH ∩ F = ∅.

The forbidden edge pairs problem, FEPΠ(G,F ′), is true when:

(1) There exists an H ⊆ G with Π(H).

(2) EH × EH ∩ F ′ = ∅.

We call the H found in these problems a witness. F and F ′ denote sets of

forbidden pairs. If the witness does not conflict with the forbidden pairs (i.e., it

satisfies the second condition), we say it ‘respects’ the forbidden pairs.

There are numerous variants on the forbidden pairs problems. For example,

one might be interested in an optimization version. Let FVPΠ(G,F, k) be true

if and only if there is a subgraph of G with at least k vertices that respects the

forbidden pairs and satisfies Π. Alternatively, one could restrict witnesses to only

induced subgraphs that satisfy the property and respect the pairs.

6. Prior Work

Let Π be a graph property. The node-deletion problem for Π is the optimiza-

tion problem of finding the minimum number of nodes one must delete from an

input graph to arrive at a resulting induced subgraph satisfying Π. There also is

a corresponding edge-deletion problem and edge-contraction problem.

The complexity of the node-deletion problem has been worked on for quite

some time, such as in [14]. Yannakakis and Lewis, in [21] and [16], proved a

number of important theorems about node-deletion and edge-deletion problems.

1. INTRODUCTION 10

In particular, they prove that the node-deletion problem on any nontrivial vertex-

hereditary property is NP-complete. Lewis and Yannakakis also prove that several

common graph properties, such as planarity, form hard edge-deletion problems,

but no general theorem is proved.

Asano and Hirata in [2] work on the edge-deletion and edge-contraction prob-

lem. In minor-hereditary properties with characteristic minors that are all made

of 3-connected components, the edge-deletion and edge-contraction problems are

NP-complete. Planarity is an example of a property that fits the necessary con-

ditions.

Much more recently, in [1], Alon, Shapira, and Sudakov show that for any

vertex-hereditary property, it can be approximated well if and only if all bipartite

graphs satisfy the property. Alon et al. also prove that for hereditary properties

that include all bipartite graphs, the problem is NP-hard. This partially answered

a question Yannakakis posed almost 30 years before.

In a series of 23 major papers starting with [19] on graph minors, Robertson

and Seymour produced scores of important results in the field. This ultimately

culminated with the Robertson-Seymour theorem, which states that every family

of graphs that is minor-ancestral can be described by a finite set of characteristic

minors. In [8], the power of the Robertson-Seymour theorem is demonstrated

by nonconstructively proving polynomial-time decision algorithms exist for many

problems that can be generalized into graph minor problems. [18] proves a very

important theorem that, given a finite, fixed set of graphs, one can tell in cubic

time if a graph contains any member of the set of graphs as a minor. Unfortu-

nately, the proof is nonconstructive.

The concept of forbidden pairs of vertices comes from the field of software test-

ing and automated analysis, and was introduced in [13]. Additional motivation is

1. INTRODUCTION 11

derived from computational biology, such as [4]. There exist pairs of mutations,

called synthetic lethals, either of which allows the organism to survive but both

together are fatal. This could be modeled as a forbidden pairs problem.

Gabow, Maheshwari, and Osterweil in [9] prove that deciding if a path that

respects forbidden pairs exists between two vertices is NP-complete. Much later,

[22] shows that slight restrictions on the forbidden pairs once again make the

path-finding problem easy. In this case, a condition was imposed that for any

vertices a, b, c, d, when (a, b), (a, c), (c, d) are forbidden, then (b, d) also must be

forbidden. [12] shows that other restrictions on the forbidden pairs can either

keep the forbidden pairs problem hard, or make them polynomial. Despite all of

these specific papers, the subject of forbidden pairs is lacking any general results.

Specific problems have been classified but no prior work categorizes the complexity

of whole swaths of forbidden pairs problems.

7. Outline of Thesis

We attempt to extend and generalize the earlier work on forbidden pairs from

[13], [9], [22], and [12], much in the way Yannakakis and Lewis did for the node-

deletion problems.

In Chapter 2, we present a widget that is used in several of our proofs.

Chapter 3 presents two examples illustrating how forbidden pairs problems can

be proven to be NP-complete for individual properties. Chapter 4 presents the

main results: that for each member of a large class of graph properties, the corre-

sponding forbidden pairs problem is NP-complete. We classify a few additional

classes of graph properties in Chapter 5. The final chapter shows that much

work remains to be done on forbidden pairs problems.

1. INTRODUCTION 12

We concentrate primarily on forbidden vertex pairs problem below. In gen-

eral, a straightforward argument shows that equivalent theorems follow for the

forbidden edge pairs problem.

CHAPTER 2

Preliminary Results

When exploring the proofs that FVPΠ is NP-complete for various individual

properties, similar constructions seemed to work for each. Here, we construct the

SAT Widget, which is immensely useful for reducing Monotone 1-in-3 Sat

(see Appendix A for definition and proof of NP-completeness) to forbidden

pairs problems.

Let C = C1 ∧ ... ∧ Cn be an instance of M1-3Sat. We construct a graph G

and forbidden pairs F as follows:

(1) Let G be an empty graph of 3n vertices.

(2) Label the vertices vi,j with i ∈ [1, n] and j ∈ {1, 2, 3}.

(3) Add an edge to G between each vi,j and each vi+1,k.

(4) Let V (vi,j) be the jth variable in Ci.

(5) Let i be the rank of vi,j.

(6) Add the pairs (vi,x, vi,y) where 1 ≤ x 6= y ≤ 3 to F .

(7) If V (vi,j) = V (vl,m), add all (vi,j, vl,x) with x 6= m to F .

This concludes the construction of the SAT Widget. Following are several

lemmas that prove the widget’s worth.

Lemma 1. A subgraph of G can have no more than n vertices and respect F .

Proof. Suppose, for the sake of contradiction, that a subgraph G ′ ⊆ G had

more than n vertices. By the pigeonhole principle, there must be an i such that

G ′ contains two distinct vertices vi,j and vi,k (with j 6= k). This is a contradiction;

13

2. PRELIMINARY RESULTS 14

Figure 1. An example SAT Widget.

step 6 above explicitly forbids two vertices with the same rank from appearing

together in a subgraph.

Therefore, all subgraphs of G that respect F must have at most n vertices. �

Lemma 2. If C is satisfiable, there exists a subgraph of G with exactly n vertices

that respects F . Furthermore, this subgraph is a path.

Proof. Suppose that C is satisfiable. Let φ be a satisfying assignment for C.

We will now construct G ′ ⊆ G that satisfies F such that |VG′ | = n.

Create G ′ by discarding every vi,j where V (vi,j) = ⊥. It should be apparent

that exactly n vertices remain. Suppose, for the sake of contradiction, that fewer

than n vertices remained. Then there would exist an i such that no V (vi,j) equaled

>. This means that clause i did not have a true literal in it, so φ was not a

satisfying assignment for C. Thus, at least n vertices must remain. By Lemma

1, G ′ cannot have more than n vertices and satisfy F .

There are two ways that G ′ could potentially violate a forbidden pair, and

both are impossible.

(1) Violating item 6 above is impossible, since by construction, for each i

there is exactly one vi,j remaining.

2. PRELIMINARY RESULTS 15

(2) Disrespecting item 7 above is impossible, for if V (vi,j) = V (vl,m), then

by construction both are in G ′ and item 4 ensures that they are the only

vertices of ranks i and l respectively.

We have shown that with a valid satisfying assignment for C, we can produce

a subgraph with n vertices that respects F . The subgraph will have exactly one

vertex of each rank, and each is adjacent to one vertex of greater and one vertex

of lesser rank. This forms a path. �

Lemma 3. If there exists a subgraph of G that satisfies F with exactly n ver-

tices, then C is satisfiable.

Proof. Suppose that G ′ ⊆ G satisfies F and has n vertices. For each vertex

vi,j in VG′ , assign V (vi,j) to >. Assign all other literals to ⊥.

Due to the forbidden pairs, no rank may have more than one true literal, and

since there are n vertices, each clause will have exactly one true literal. Now we

need to ensure that no literal has been assigned both > and ⊥.

If some literal had been assigned to both > and ⊥ then there would be a vi,j

and a vl,m with V (vi,j) = V (vl,m). The final rule of the construction of F ensures

that both or neither of these two vertices would be in G. Therefore, this situation

cannot occur. Thus, the truth assignment extracted from G ′ must satisfy C. �

Lemma 4. Any subgraph of G that respects F will be a single path or discon-

nected paths.

Proof. For each rank, the forbidden pairs ensure that there can be at most

one vertex. Suppose, for the sake of contradiction, that some vertex vi,j in a

subgraph that respects F had degree greater than 2.

Consider the adjacent vertices: vi−1,1, vi−1,2, vi−1,3, vi+1,1, vi+1,2, and vi+1,3. By

the pigeonhole principle (or manual verification), any pair of those violates the

2. PRELIMINARY RESULTS 16

forbidden pairs that prevents two vertices with the same rank. A contradiction

has been reached, so no vertex has degree greater than two. Thus, the subgraph

must be components of paths or cycles.

Next, suppose for the sake of contradiction that a cycle existed. Consider a

vertex of least rank in the cycle. Since it is part of a cycle, it must have two

adjacent vertices of equal or greater rank. We know that no vertex has any edges

to other vertices of the same rank. Additionally, each vertex has at most 3 edges

to vertices of greater rank, but they are pairwise forbidden. Thus, no vertex in

a subgraph that respects F can have two adjacent vertices of equal or greater

rank, so a contradiction has been reached. Thus, no cycles exist in subgraphs

that respect F .

Therefore, since all components of a valid subgraph must have degree 2 or less

and are not cycles, each component is a path. �

Lemma 5. There is a path from v1,j to vn,k for some j, k that respects F if

and only if C is satisfiable.

Proof. By Lemma 3, if C is not satisfiable, then no subgraph of G has n

vertices while respecting F . For the sake of contradiction, suppose that a path

had less than n vertices and was a path from v1,j to vn,k. Since there are n ranks

between the two but fewer than n−1 edges, by the pigeonhole principle, some edge

must traverse more than one rank. By construction, this is trivially impossible

and we have reached a contradiction. Thus no path with fewer than n vertices

will connect the two endpoints.

So, by Lemma 3, C must be satisfiable if the path exists. Lemma 2 proves

the other direction. �

CHAPTER 3

Two Illustrative Examples

The following examples are proofs that forbidden pairs problems for two spe-

cific graph properties are NP-complete. They illustrate the techniques that we

generalize in the following chapter.

1. Cyclic

Let Π be the ancestral property cyclic, which is true of all graphs containing

a cycle. It is important to note that Π can be recognized in polynomial time.

Theorem 2. FVPΠ is NP-complete.

Proof. First, we need to verify that FVPΠ is in NP. Let H ⊆ G be a

certificate to FVPΠ(G,F). We can check that H is valid by ensuring that each

member of VH × VH is not in F . This takes at most quadratic (polynomial) time.

We now reduce Monotone 1-in-3 Sat to FVPΠ. Let C = C1 ∧ ... ∧ Cn be

conjunctive clauses each with 3 literals, an instance of M1-3Sat. Construct a

graph Γ and forbidden pairs F as follows:

(1) Let (G,F) be an instance of the SAT Widget for C.

(2) Add G to Γ and let F = F .

(3) Add a disconnected vertex s.

(4) For each v1,j, add an edge sv1,j.

(5) For each vn,j, add an edge svn,j.

17

3. TWO ILLUSTRATIVE EXAMPLES 18

v3,2

v1,1

v1,3

v2,1

s

v2,3

v2,2

v3,3

v3,1

v1,2

Figure 1. Cyclic subgraph highlighted in the SAT Widget for
example clause (w ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (w ∨ y ∨ z).

Consider a subgraph of Γ that satisfies F . By Lemma 4, the widget has no

cycles in it. By Lemma 5, there is a path of length n through the entirety of the

widget that respects F if and only if C is satisfiable.

Pick the subgraph that consists of the path through the widget, s, and edges

sv1,j and svn,k. This is a cycle. Therefore, the answer to FVPΠ(Γ, F) decides the

satisfiability of C.

As an example, Figure 1 shows the construction for the reduction from an

instance of M1-3Sat, (w ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (w ∨ y ∨ z). We are able to

extract a cyclic subgraph that respects the forbidden pairs, as denoted by the

bolder edges and double-circled vertices. The corresponding truth assignment is

w = ⊥, x = ⊥, y = >, z = ⊥. �

3. TWO ILLUSTRATIVE EXAMPLES 19

2. Matching

A matching is a set of edges that are pairwise non-adjacent. Finding a match-

ing in a graph is a common problem with several known polynomial time algo-

rithms. The matching number of a graph is the size of the matching with the

most edges. Finding matchings and the matching number of a graph is in P.

We can adapt the forbidden pairs problem to show that finding matchings in

graphs with the presence of forbidden pairs is hard.

A matching is perfect if every vertex in the graph is incident to exactly one

edge in the matching. In this case, the matching number is equal to half the

number of vertices in the graph. Let Π be the property ‘has a perfect matching’.

Trivially, there is a polynomial time algorithm for FVPΠ: examine every pair of

vertices and select the first pair that is adjacent and not forbidden. However:

Theorem 3. Given a graph G, forbidden pairs F , and a natural number k,

the optimization problem FVPΠ(G,F, k) is NP-complete.

Proof. Whether or not a graph has a perfect matching can be determined in

polynomial time, so clearly the problem is in NP. Now, we must show that it is

also NP-hard.

We reduce from M1-3Sat, with C = C1 ∧ ... ∧ Cn as an instance. Let (G,F)

be a copy of the SAT Widget for C. For each i, attach all vi,j to a new vertex

wi to create a new graph G ′.

By Lemmas 2 and 3, we can find a subgraph of n from the widget vertices

if and only if C is satisfiable.

We will now show that FVPΠ(G ′,F , 2n) is true if and only if C is satisfiable.

Pick a subgraph containing 2n vertices. Since there are n clauses and n additional

vertices, by Lemmas 2 and 3, this is possible if and only if C is satisfiable. Pick

3. TWO ILLUSTRATIVE EXAMPLES 20

a subgraph containing the edges incident to each wi, but none from the original

widget. These edges form n connected components of two vertices each. This is

a perfect matching as it contains n edges and 2n vertices. Thus, we can use the

optimization version of the forbidden vertex pairs problem to decide Monotone

1-in-3 Sat, so the problem is NP-complete. �

CHAPTER 4

Main Result

Our main result proves that an infinite number of related graph properties,

each decidable in polynomial time, become NP-complete under the forbidden

vertex pairs decision problem.

Let Π be a minor-ancestral graph property defined by a known set of char-

acteristic graphs. In this chapter, we seek to use the nature of the characteristic

graphs of Π to determine the complexity of FVPΠ. We call a graph that is a

disjoint union of paths and claws clawful.

Theorem 4. FVPΠ is NP-complete if Π has no clawful characteristic graph.

Proof. Robertson and Seymour showed that any minor-ancestral property

can be recognized in polynomial time, so the problem is in NP.

To show that it is NP-complete, we reduce from Monotone 1-in-3 SAT. Let

C = C1 ∧ ... ∧ Cn be an instance of M1-3Sat. Let H be a characteristic graph

for Π with least maximum degree. We construct a graph Γ and forbidden vertex

pairs F to act as input to the problem.

First, if any component of H is a subdivision of a star of higher degree than 3,

replace the star with a widget that has the star as a minor but reduces the degree

to 3. This is demonstrated in Figure 1.

Now, for each edge uv ∈ EH perform the following:

(1) Delete the edge.

(2) Let (G,F) be a fresh instance of the SAT Widget for C.

21

4. MAIN RESULT 22

a

cb ed

a1

f d′ e′c′

a5a4

b′ f ′

a3a2

Figure 1. The star on the left can be contracted from the graph
on the right.

(3) Let vi,j be the vertices in G.

(4) Add all pairs in F to F .

(5) Add edges uv1,1, uv1,2, uv1,3, wvn,1, wvn,2, wvn,3.

Claim 1. If C is satisfiable then there is a graph Γ′ ⊆ Γ that respects F with

H as a minor.

Proof. By Lemma 4 there is a path through each G. Take the subgraph

Γ′ ⊆ Γ that selects each of these paths and all of the original vertices from H.

H is a minor of Γ′, since each widget inserted between vertices u and v is a path

that can be contracted into a single edge from u to w. After contracting each G,

the resulting graph is H. �

Claim 2. If C is not satisfiable then no subgraph of Γ respecting F can have

any characteristic graph for Π as a minor.

Proof. Let Γ′ be any subgraph of Γ. By Lemma 5, in Γ′ there is no path

between any two of the original vertices from H. Additionally, by Lemma 4,

the remains of each widget in Γ′ is a disjoint union of path graphs. We can

have multiple paths connecting to original vertices from H, which means that Γ′

consists of only paths and subdivisions of stars.

4. MAIN RESULT 23

No characteristic graph for Π can be a minor of Γ′ because each vertex from G

is now a star of lesser degree (by construction) than any stars in the characteristic

graphs. �

We proved that there is a subgraph of Γ that respects F and has H as a minor if

and only if C is satisfiable. Additionally, the construction can clearly be completed

in polynomial time. Therefore, the proof of the theorem is complete. �

Theorem 5. FVPΠ is in P if a characteristic graph for Π is a path.

Proof. Suppose that there is a characteristic graph for Π that is a path of

length p. FVPΠ(G,F) can be decided as follows.

First, check to see if there is a path of length p in G. This can be done

by merely checking every set of p vertices to see if they form a path and are

not pairwise forbidden in any way. If there is such a path, we have decided the

problem affirmatively.

Next, for each other characteristic graph C, we will show that we can decide

whether or not G contains C as a minor that respects the forbidden pairs in

polynomial time.

We are going to need at least |VC | vertices from G to identify with the vertices

in C. Once these are picked, they might not be connected in the same way that

C is. Extra edges can be discarded, but missing edges would need to be formed

through edge contraction of G.

There are up to |VC |2 missing edges. Each edge will take no more than p

contractions. This is because if it took more than p contractions, the path along

the vertices being contracted would be a subgraph isomorphic to the path char-

acteristic graph, and the initial search for paths would have located this.

4. MAIN RESULT 24

We have an upper bound of p|VC |2 contractions possible to form C from any

subgraph of G. In the worst-case scenario, we try every way to pick |VC |+ p|VC |2

vertices from G and then try every way to contract.

There are at most
|VG|!

(|VG| − p|VC |2)!
≤ |VG|p|VC |2 ways to pick sufficient vertices,

try the appropriate contractions, and check that each resulting graph is isomorphic

to C and respects F . This is polynomial in the size of the input graph G. �

CHAPTER 5

Additional Results

In this chapter, we show a few additional results concerning forbidden pairs

problems.

1. Hereditary Properties are Easy

Theorem 6. If Π is edge-, vertex-, or minor-hereditary, then FVPΠ and FEPΠ

can be decided in polynomial (in fact, O(1)) time.

Proof. If Π is trivial, then there are only a finite number of graphs that do

or do not satisfy Π. Thus, FVPΠ and FEPΠ could be decided in constant time by

checking for isomorphism with the input graph.

If Π is nontrivial, then K1 (a lone vertex) is in Π. Since K1 is a subgraph,

induced subgraph, and minor of every other graph (except the trivial graph), if it

were not in Π, then Π could only have finitely many (two) graphs and thus would

be trivial.

Pick K1 as the witness. It has no pairs of vertices or edges so it cannot possibly

violate them. We have successfully found a subgraph, induced subgraph, or minor

of our input that has the property and does not violate the forbidden pairs. It

was found in time that is constant regardless of the size of the input to FVPΠ. �

25

5. ADDITIONAL RESULTS 26

2. Finitely-Defined Edge- and Vertex-Ancestral Properties

Theorem 7. Suppose that Π is an edge- or vertex-ancestral property that can

be characterized by a finite number of graphs. Then one can decide FEPΠ and

FVPΠ in polynomial time.

Proof. Let k be the minimum number of characteristic (induced if vertex-

ancestral) subgraphs required to define Π, with the largest having l vertices.

We can check for the existence of one of these for a graph G = (V,E) in

time on the order of |V |l, or polynomial in the size of the input graph. For each

characteristic subgraph H = (V ′, E ′), check if any tuple of distinct vertices from

V |V
′| is isomorphic to H. We spend on the order of |V |l time on each of the k

subgraphs, yielding a time complexity of O(k|V |l). �

3. Hereditary and Ancestral Optimization

Lemma 6. If Π is nontrivial and edge-hereditary then all empty graphs satisfy

Π.

Proof. An empty graph with k vertices is a subgraph of every other graph

with at least k vertices. Since Π is hereditary, if there is a graph in Π with at least

k vertices, then the empty graph with k vertices satisfies Π. Π is nontrivial, so

there are graphs of arbitrary sizes. Thus, for each empty graph, there is a larger

graph with the property, so every empty graph satisfies Π. �

Theorem 8. Let Π be nontrivial, infinitely characterized, and edge-hereditary

or edge-ancestral. Then FVPΠ(G,F, k) is NP-hard. Furthermore, if Π can be

recognized in polynomial time, then the problem is NP-complete.

5. ADDITIONAL RESULTS 27

Proof. If Π can be recognized in polynomial time, then we can show that

the optimization variant on FVPΠ is in NP. If G is a certificate to FVPΠ then it

is given that we can verify that it satisfies Π in polynomial time.

Let C = C1 ∧ ... ∧ Cn be an instance of M1-3Sat.

First, consider the case where Π is edge-hereditary. We must now show that

the optimization variant is NP-hard. Our graph and forbidden pairs are exactly

those specified in the SAT Widget for C. By Lemma 6, all empty graphs satisfy

Π. Lemmas 2 and 3 ensure that a subgraph of the widget with n vertices exists

if and only if C is satisfiable. We can discard all edges from G to ensure that

any subgraph we choose has the property. Therefore, we can answer M1-3Sat

by asking FVPΠ(G,F , n).

Finally, we consider the case where Π is edge-ancestral. Let G be the smallest

graph that satisfies Π. We can find this in constant time. To this, append a

copy of the SAT Widget for C to produce a combined graph H and adopt the

widget’s forbidden pairs. Notice that any subgraph of H that includes all of G is

in the property. By Lemmas 3, 1 and 2, we can get at most n vertices from the

widget, and n if and only if C is satisfiable.

Thus, FVP(H,F , |VG|+ n) is true if and only if the widget can be completed,

which implies that C must be satisfiable. �

4. Fixed Parameter Tractable

A parameter is a function from instances of a problem to N. A problem is

fixed parameter tractable (FPT) in parameter k if there is an algorithm that runs

in time f(k) ∗ nO(1), where f is a function independent of the size of the input

problem, n. In other words, holding k constant means that the complexity of the

problem grows polynomially with the remainder of the input.

5. ADDITIONAL RESULTS 28

Theorem 9. If Π can be recognized as a subgraph in polynomial time, then

FVPΠ and FEPΠ are FPT on the number of forbidden pairs.

Proof. Suppose that any input to FVPΠ will have no more than k forbidden

pairs. From the k pairs, we can derive at most 2k different ways to pick one

vertex from each pair. For each way, delete the vertices not picked and check the

resulting graph for the property. If one of these has it, then answer affirmatively,

otherwise reject.

This algorithms takes up to a constant 2k iterations of a polynomial-time check

for the presence of a subgraph with a property. Lower constant overheads have

not been investigated. �

CHAPTER 6

Conclusions & Future Work

This thesis seeks to shine light on the computational complexity of an interest-

ing family of problems. Most of the questions in the domain remain open or have

yet to be investigated; the flexibility of the problem means it can be transformed

in any number of ways.

Of particular interest are the complete bounds on minor-ancestral properties.

The following claim will be investigated imminently:

Conjecture 1. Let Π be minor-ancestral. FVPΠ is in P if and only if there

exists a clawful characteristic graph C, and for each other characteristic graph for

Π, one can subdivide any one edge some number of times and find C as a minor.

Otherwise, FVPΠ is NP-complete.

Future work could investigate edge- or vertex-ancestral properties, as the for-

bidden pairs problems for many individual ancestral properties are hard. For

many properties, the FVP and FEP problems have the same complexity; fur-

ther research could determine if the problems are precisely equally hard for every

property.

29

Bibliography

[1] Noga Alon, Asaf Shapira, and Benny Sudakov. Additive approximation for edge-deletion
problems. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’05, pages 419–428, Washington, DC, USA, 2005. IEEE Computer Society.

[2] Takao Asano and Tomio Hirata. Edge-deletion and edge-contraction problems. In Proceed-
ings of the fourteenth annual ACM symposium on Theory of computing, STOC ’82, pages
245–254, New York, NY, USA, 1982. ACM.

[3] John Adrian Bondy. Graph Theory With Applications. Elsevier Science Ltd, 1976.
[4] Arthur Brady, Kyle Maxwell, Noah Daniels, and Lenore J. Cowen. Fault tolerance in protein

interaction networks: Stable bipartite subgraphs and redundant pathways. PLoS ONE,
4(4):e5364, 04 2009.

[5] A. Cobham. The intrinsic computational difficulty of functions. In Proceedings of the 1964
Congress on Logic, Mathematics and the Methodology of Science, pages 24–30, 1964.

[6] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the
third annual ACM symposium on Theory of computing, STOC ’71, pages 151–158, New
York, NY, USA, 1971. ACM.

[7] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17(3):449–467,
1965.

[8] Michael R. Fellows and Michael A. Langston. Nonconstructive tools for proving polynomial-
time decidability. J. ACM, 35:727–739, June 1988.

[9] H N Gabow, S N Maheshwari, and L J Osterweil. On Two Problems in the Generation of
Program Test Paths. IEEE Transactions on Software Engineering, SE-2(3):227–231, 1976.

[10] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[11] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors,
Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[12] Petr Kolman and Ondřej Pangrác. On the complexity of paths avoiding forbidden pairs.
Discrete Applied Mathematics, 157(13):2871–2876, jul 2009.

[13] K. W. Krause, M. A. Goodwin, and R. W. Smith. Optimal software test planning through
automated network analysis. TRW Systems Group, Redondo Beach, Calif., 1973.

[14] M. S. Krishnamoorthy and Narsingh Deo. Node-deletion np-complete problems. SIAM
Journal on Computing, 8(4):619–625, 1979.

[15] L. Levin. Universal search problems. Problems of Information Transmission, 9:265–266.
[16] John Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties

is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, apr 1980.
[17] Christos Papadimitriou. Computational Complexity. Addison Wesley, Reading, MA, USA,

1993.
[18] N. Robertson and P. D. Seymour. Graph minors .xiii. the disjoint paths problem. Journal

of Combinatorial Theory, Series B, 63(1):65 – 110, 1995.
[19] Neil Robertson and P.D. Seymour. Graph minors. i. excluding a forest. Journal of Combi-

natorial Theory, Series B, 35(1):39 – 61, 1983.

30

[20] B.A. Trakhtenbrot. A survey of Russian approaches to Perebor (brute-force searches) algo-
rithms. IEEE Annals of the History of Computing, 6:384–400, 1984.

[21] Mihalis Yannakakis. Node-and edge-deletion np-complete problems. In Proceedings of the
tenth annual ACM symposium on Theory of computing, STOC ’78, pages 253–264, New
York, NY, USA, 1978. ACM.

[22] Hananya Yinnone. On paths avoiding forbidden pairs of vertices in a graph. Discrete Appl.
Math., 74:85–92, April 1997.

APPENDIX A

Monotone 1-in-3 SAT

1-in-3 Sat is the decision problem true of satisfying assignments that include
exactly one true literal per clause. Monotone 1-in-3 Sat is true of satisfying
assignments that respect the one-in-three condition and have input that includes
no negated literals.

First we prove that 1-in-3 Sat is NP-complete, then we prove the monotone
variation.

Lemma 7. 1-in-3 Sat is NP-complete.

Proof. We shall use reduction from 3-Sat. Let X = C1 ∧ ... ∧ Ck be the
conjunction of disjunctive clauses of an instance of 3-Sat. We will construct
another 3-CNF formula Y that is true exactly when X is true and satisfies the
one-in-three requirement.

If Ci = (x ∨ y ∨ z), it corresponds to the clauses in Y with new variables
a, b, c, d, e, f :

(1) (x ∨ a ∨ d) ∧ (y ∨ b ∨ d) ∧ (a ∨ b ∨ e) ∧ (c ∨ d ∨ f) ∧ (z ∨ c ∨ ⊥)

We must now prove that if x ∨ y ∨ z is true, then we can assign truth values
to the literals a, b, c, d, e, and f such that one literal per clause disjunctive clause
is true. We must also prove that when x ∨ y ∨ z is false, no assignment of truth
values to a, b, c, d, e, and f will have exactly one true literal per clause and satisfy
the entire expression.

For the first case, there are 8 possible assignments to x, y, z. Feasible assign-
ments to the remainder of the variables are listed in each row:

x y z a b c d e f

> ⊥ ⊥ ⊥ > > ⊥ ⊥ ⊥
⊥ > ⊥ > ⊥ > ⊥ ⊥ ⊥
⊥ ⊥ > ⊥ ⊥ ⊥ > ⊥ ⊥
> > ⊥ ⊥ ⊥ > ⊥ > ⊥
> ⊥ > ⊥ > ⊥ ⊥ ⊥ >
⊥ > > > ⊥ ⊥ ⊥ ⊥ >
> > > ⊥ ⊥ ⊥ ⊥ > >

As each row is a valid truth assignment that satisfies formula 2.1, this proves
the first case. Now suppose x = y = z = ⊥. We quickly see that the clauses must
be false:

32

x = y = z = ⊥
=⇒ c = > from last clause

=⇒ d = f = ⊥ from penultimate clause

=⇒ a = b = > from first two clauses

⇒⇐ in the third clause

This proves that without x∨y∨z we cannot satisfy formula 2.1. Thus, 1-in-3
Sat is just as difficult to solve as 3-Sat. �

Proof of Theorem 1. Now, we prove the monotone variation. Suppose we
have a clause of the form x∨ y ∨ z. We replace this with (a∨ y ∨ z)∧ (a∨ x∨⊥).
Due to the one-in-three property, the second clause promises that exactly one of
x and a are true. In other words, a must have an opposite truth value of x, just
like x.

Substitute all negated variables in an instance of 1-in-3 Sat using this method
and fresh variables for each. The size of the instance will at most double, and all
of this can be performed in linear time. This proves that Monotone 1-in-3 Sat
is NP-complete. �

