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ABSTRACT 
 
 

The Emergence and Evolution of Social Norms: 
Rational Cooperation in a Finitely Repeated Prisoners’ Dilemma 

 
 

By 
 

Matthew T. Burke 
 
 
 
 

In reaction to the contractarian approach to morals of David Gauthier (1986) that 
assumes individuals rationally restrict their own self-interest in order to facilitate 
cooperation and the associated benefits, this paper investigates cooperation among 
rational players in a finitely repeated Prisoners’ Dilemma through game theoretic 
analysis.  This paper attempts to show that rational cooperation is possible in a finitely 
repeated Prisoners’ Dilemma when two-sided information asymmetry is incorporated 
regarding player types, and that this analysis is consistent with an evolutionarily stable 
equilibrium.  
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Introduction 

 The purpose of this thesis is to address cooperation as a social phenomenon.  

From the convenience of having a door held for you when your hands are full to the vast 

material wealth provided through specialization in a functioning economy, the benefits of 

cooperation are almost too great to completely appreciate.  Yet, cooperative behavior 

seems to be diametrically opposed to an important assumption of neoclassical economics, 

that individuals are rational actors seeking to maximizing their own personal utility.  The 

conflict between cooperation and self-interest is inherent in the general strategic 

interaction known as the Prisoners’ Dilemma.  The Prisoners’ Dilemma arises in a group 

when the individuals that benefit the most from an interaction are those that do not 

cooperate when others do.  As a whole, the group would benefit most if all members 

cooperate, but obtaining the optimal level is challenging because individuals, behaving in 

their self-interest, will tend not to cooperate as the individual that does not cooperate, 

benefits the greatest from the interaction.  In the Prisoners’ Dilemma, a group will tend 

towards a sub-optimal level where individuals expect others not to cooperate unless some 

other solution is reached. 

 David Gauthier (1986) suggests that the Prisoners’ Dilemma is resolved in society 

and a cooperative outcome reached through a social contract, and that this social contract 

is followed by the members of society because individuals recognize that restraining their 

own self-interest is, in fact, rational.  However, by suggesting that cooperation is rational, 

Gauthier fails the properly address the strategic problem central to the Prisoners’ 

Dilemma.  Cooperation may be beneficial to society, but cheating provides a greater 

immediate payoff. 
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 While Gauthier’s fails to properly address the Prisoner’s Dilemma, the solution to 

the dilemma is not self-evident.  In rational choice game theory, the cooperative outcome 

is achievable when Prisoners’ Dilemma interactions repeat indefinably over time, but 

cooperation is not extendable finitely repeated Prisoners’ Dilemma games.  In light of 

experimental evidence, particularly Axelrod (1984), individuals do seem to cooperate 

more than theory suggests, and further analysis of finitely repeated games is necessary to 

explain the dichotomy between theory and experiment. 

 In the study of evolutionary games, cooperation is possible because evolutionary 

games do not require that individuals always behave as rational actors.  Players behave 

according to pre-programmed behavior adopted laterally or through generations based on 

expected return from the future use of the behavior.  These pre-programmed strategies 

operate as social norms, and they facilitate cooperation by suggesting certain behavior in 

specific social dilemmas that, without some exogenous influence, would result in a 

suboptimal outcome.    

 If all individuals operated strictly as preprogrammed strategies, then universal 

cooperation would be achievable if the cooperative strategy were employed by all 

members of the population.  However, this thesis rests on the belief that society is neither 

composed of all pre-programmed individuals or of all rational individuals.  As long as 

some portion of the population is recognized as rational, analyzing cooperation in the 

finitely repeated Prisoners’ Dilemma is necessary.   
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Thesis Outline 

 This thesis will begin with a chapter discussing in greater detail the Prisoners’ 

Dilemma and its inherent strategic problem.  The chapter will then look at the ways in 

which the Prisoners’ Dilemma is overcome in rational choice game theory, through 

indefinitely repeated games, and it will readdress the criticism of Gauthier in the context 

of game theoretic analysis.  In the final section of the first chapter, the Prisoners’ 

Dilemma will be explained through the lens of evolutionary analysis. 

 In the second and third chapters of this thesis I develop a model proving the 

possible outcomes for a sequential game with multiple periods of the Prisoners’ Dilemma.  

In an attempt to reveal a situation where cooperation is rational, I create a scenario where 

rational players and players using pre-programmed strategies interact with two-sided 

information asymmetry regarding player types.  I then imbed the rational choice model, 

using the respective expected payoffs of each player, into an evolutionary framework to 

evaluate if the two types of players interacting in the rational choice game would persist 

in an evolutionarily stable system.  The model in the second chapter is of a game with 

two periods of the Prisoners’ Dilemma, and the third chapter analyzes a three period 

repeated PD with the additional requirement of Bayesian Updating in the middle period.   

 The use of information asymmetry to explain rational cooperation, is motivated 

by Kreps et al (1982), and this thesis contributes original material by extending the Kreps 

et al. model to a game with two sided information asymmetry, and by assessing the 

validity of the assumption of rational players that the opposing player is irrational with 

some positive probability.  The last chapter concludes the findings of the two models, and 

it also provides suggestions for further research.        
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CHAPTER I: THE PRISONERS’ DILEMMA  

1.1 Introduction 

 In light of the evidence suggesting individuals cooperate more than might be 

predicted on the basis of immediate strategic consideration, further consideration of the 

Prisoners’ Dilemma is necessary to reconcile game theoretic theory with the experimental 

evidence.  The Prisoners’ Dilemma, has been recognized, in one form or another, 

throughout history by intellectuals such as Plato, Hobbes, Hume, and Gauthier, although 

analysis of the dilemma did not enter the realm of economics until the advent of game 

theoretic analysis in the mid 20th century.  Like Gauthier’s, most suggested solutions to 

the dilemma have argued that when individuals in the dilemma recognize that 

cooperation is in their own self-interest as the benefits from long-run cooperation are 

much greater than the immediate non-cooperative outcome, they will cooperate.  Game 

theory, in both its rational-choice and evolutionary forms, can be used to assess the 

coherence and scope of this claim.          

 

1.2. The Prisoners’ Dilemma Framework 

 The story of the Prisoners’ Dilemma (PD) goes as follows: two prisoners are 

interrogated separately about a crime they committed, but not enough evidence exists to 

convict either of them outright.  They both have the option of confessing to the crime or 

keeping silent, and they both know the other prisoner has this option as well.  If both 

prisoners admit wrong-doing, then each will serve a sentence for five years.  If neither 

confess, enough evidence is available to convict them of a lesser crime and both will be 

sent to prison for one year.  However, if only one confesses, in exchange for testifying, he 
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is granted immunity and is free to walk while the other must serve a hefty ten year 

sentence.  The following matrix shows the payoffs for this dilemma associated with 

possible strategies of each player.  In common form, the first number in each cell is either 

the sentence or payoff for Player A and the following number is for Player B.  

  B 
 

 Not 
Confess Confess

Not 
Confess 1, 1 -2, 2 

 
 
 

A 

Confess 2, -2 -1, -1 

 
 Matrix 2. 

 The “dilemma” is that each person realizes he will gain more by confessing 

regardless of whether the other confesses or not, and he will behave accordingly.  

However, when both confess, each would prefer the situation where neither confessed.  

Confess is a Nash equilibrium as it is an equilibrium where each strategy is the best 

strategy to play against itself, but the condition for equilibrium is even stronger.  Confess 

is the dominant strategy as it returns a greater payoff given either possible strategy of the 

other player.  This results in a Pareto-inferior equilibrium where the Pareto-dominant 

outcome, the outcome that provides the greatest social payoff, is for neither to confess.  

The Prisoners’ Dilemma can be generalized to a larger game with more players, but for 

any Prisoner’s Dilemma, players always choose between two strategies, to either 

cooperate or collude, or to choose the cheating or defecting strategy.   
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1.3 Intellectual History of the Prisoners’ Dilemma 

 As far back as Plato (360 BC), Prisoners’ Dilemmas have been recognized.  

Glaucon, in The Republic, presents the following story to Socrates: the ancestor to Gyges, 

king of Lydia, was a shepherd and who found a magic ring in a cavern.  When the setting 

of the ring was turned, the bearer became invisible, and when the setting was turned back 

again towards the bearer, the bearer became visible once again.  The shepherd realized 

the power of the ring, and he lost no time in wielding the ring to his advantage.  The 

shepherd disguised himself as a messenger to the king, and upon arrival, he seduced the 

king’s wife, killed the king, and took power over Lydia.  Glaucon goes on to suggest to 

Socrates that no one would have the will not to defect against society when invisibility 

and therefore freedom from punishment is guaranteed.1  Socrates goes on to rebut this 

story by explaining that it is in an individual’s self-interest to obey the laws of society 

regardless of the possible consequences of breaking the law.  

 Thomas Hobbes (1651), an English philosopher of the 17th century, provides in 

Leviathan a foundation and justification for governments and societies.  In Hobbes’ state 

of nature, the hypothetical initial condition of the human race before government, society 

cannot overcome the Prisoners’ Dilemma.  Here, the cooperative outcome is never 

achieved, and society is in a constant “state of war” where individuals fight and cheat 

incessantly.  When society is not in the state of nature, it is at peace, and all individuals 

enjoy the respective benefits of cooperation.  The problem in the state of nature is that no 

one individual has the incentive to attempt to reach the peaceful level because by doing 

so, the individual subjects himself to the non-cooperative treatment of others.  Hobbes’ 

suggests that society is able to reach the peaceful level through a social contract.  A social 
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contract is an agreement made by free and rational individuals to cooperate with one 

another, and Hobbes proposes the peaceful level will be obtained if all the members of 

the society submit to a sovereign power.  The Foole in Leviathan does not submit to the 

social contract because he only recognizes the personal benefits of taking advantage of 

others, assuming that others will not quit cooperating with him, without understanding 

that he would be better off in the long run if he cooperated and assuming.2     

 Rousseau (1754), an Enlightenment philosopher, uses an example of a stag hunt 

in his Second Discourse to describe a Prisoners’ Dilemma.  The story goes as follows: to 

kill a stag, a group of hunters must surround the stag, requiring the contribution of the 

entire party.  However, if any one hunter defects from the group to kill a rabbit, the 

hunter that kills the rabbit benefits more from leaving the group than from staying and 

contributing to the kill of the stag.3  The dilemma here is that while it is in the self-

interest of a hunter to defect from the group and kill the rabbit, it is in the best interest of 

the group for all of the hunters to stay on board and kill the stag.  Rousseau does not 

detail how a group of hunters might overcome this dilemma; rather he uses it as an 

example of the problems created by social interaction.        

 David Hume (1739) of the 18th century attends to the Prisoners’ Dilemma in an 

attempt to explain the emergence and maintenance of morals.  Hume presents a thought 

experiment where two neighbors commonly own a meadow, and both neighbors would 

benefit if the meadow was drained.  Hume suggests that the meadow will most likely be 

drained because the two neighbors know each other and each neighbor can easily see the 

consequences of not cooperating.  However, in a much larger group, draining the 

meadow would be much more difficult.  A plan allowing for an equal contribution from 
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each individual would be challenging, and it would be even more difficult to execute the 

plan because each individual would attempt to cheat on the work of the other members of 

the group.4

 Approaching the specific concern of the present work, Hume seeks to explain 

morals in the context of the Prisoners’ Dilemma.  First he recognizes that, after the 

invention of property, individuals are able to benefit from simultaneously exchanging 

tangible commodities.  However, he suggests that people would benefit even more if they 

could be relied on to cooperate over a longer time period.  He provides a case where one 

party provides a good or service in the present, and the other party completes the 

exchange at some point in the future.  This exchange is not possible without the ability of 

the initial provider to secure a guarantee that the other party will fulfill his end of the 

exchange.  According to Hume, the benefit from promising to fulfill an exchange in the 

future and fulfilling that promise can easily be recognized, and once it is recognized, 

individuals will act morally in expectation of future cooperation.5

 Moving to the 20th century, David Gauthier (1986) justification for the existence 

or morals is currently one of the most influential theories on the subject.  Similar to 

Hume, Gauthier suggests that people often act morally and overcome the Prisoners’ 

Dilemma because they recognize that obeying morals is in their self-interest.  Gauthier 

defines morals as the “rational constraint on the pursuit of individual interest.”6   He 

suggests that by resisting immoral action when others also act morally, individuals reap a 

greater payoff.  Following morals is rational because the expected future benefit is much 

greater is much greater than following immediate self-interest.  To explain the initial 

emergence of morals, Gauthier takes a contractarian approach.  His state of nature is 
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similar to Locke’s state of nature, and he describes the initial situation in terms of what 

he calls the Lockean proviso.  The Lockean proviso is an assumption that in the state of 

nature, individuals are unable to improve their situation by hurting others, and as a result 

of this assumption an implicit structure of property rights is created.  The Lockean 

proviso is a necessary pre-requisite for any moral contract.    

 To escape the state of nature, individuals form a contract with each other agreeing 

to restrain self-interest in the expectation of greater wealth from cooperating.  Gauthier 

equates the initial setting of the contract to a bargaining table.  When bargaining, each 

individual attempts to receive the greatest payoff from the contract, and an agreement is 

reached through maximin relative concession.  Each individual tries to minimize the 

maximum concession he makes to other individuals when bargaining, and individuals are 

concerned with their relative maximum concession, the concession compared to what 

other individuals are conceding.  Maximin relative concession is favored by the 

bargainers over the zero-point, the result when bargaining fails and the individual does 

not enjoy the benefits from cooperating, when forming a contract allows for a greater 

expected payoff than at the zero-point.  It is necessary that individuals start at the 

Lockean proviso because it is the only way to obtain the voluntary compliance of all 

individuals.  Respecting the Lockean proviso is rational because it is a necessary 

condition for bargaining, and if it is not respected, individuals will not be able to 

appreciate the benefits of cooperation.   

 Once Gauthier explains how a moral contract will be reached, he seeks to explain 

why the contract will be followed ex post.  Here Gauthier introduces a new concept, what 

he calls constrained maximizers, individuals that have formed the moral contract and 
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behave accordingly.  It is rational for constrained maximizers to act morally when they 

expect enough of the other members of the group to cooperate so that the payoff from 

future cooperation is greater than not cooperating.  Those individuals that do not comply 

are irrational, following from Gauthier’s initial definition of morals.7        

 

1.4 Critique of the Literature 

 It seems common practice to claim that the Prisoners’ Dilemma is overcome when 

individuals recognize that cooperating is in their best interest, but this makes the 

assumption that the interests of the individual and the interests of the group as a whole 

are aligned.  Gauthier’s formulation ignores the strategic problem of the Prisoners’ 

Dilemma.  Although commitment to a “moral” code could improve social outcomes it is 

not in individuals’ unilateral interest to commit to such a code.  Mancur Olson (1965) in 

The Logic of Collective Action refuted the above assumption of the alignment of interests.  

While it is in the common interest of the individuals in the group to reap the benefits of 

cooperation, it is not in the common interest of the members of the group to abstain from 

the benefits of not cooperating, a cost necessary to achieve the objective of cooperation.  

Individuals will only work to fulfill the objective of the group if they are coerced to do so.  

Olson never specifies the form of the collective action problem, whether it takes the form 

of a Prisoners’ Dilemma or a coordination problem, but much of what Olson suggests 

about collective action problems seems to apply directly to the Prisoners’ Dilemma.  

Olson applies his work to the analysis of labor unions, Marxist theory, and pressure 

groups.  However, it is Olson’s basic attack on the assumption of aligned interests that is 

most profound and directly applicable to the argument in this thesis.           
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 Olson’s critique is an applicable response to all of the previous arguments for 

rational cooperation.  A critique of contract theory and Gauthier’s development of 

rational choice theory will now be given special attention.  A contractarian approach to 

overcoming the Prisoners’ Dilemma, used by Hobbes and Gauthier, must explain why 

individuals are willing to act as though they signed an externally enforceable contract, 

even though no such contract actually exists.  This suggests that unless the contract is 

binding, individuals will continue to behave in the same manner after the contract as they 

did before it was created.   

 Gauthier’s work is a special case because his argument involves a modification to 

conventional theory of strategic behavior.  Unlike the other authors that explain the 

solution to Prisoners’ Dilemmas as the recognition by individuals of the long-run benefits 

of cooperation, Gauthier redefines rationality so that the point of recognition is 

internalized in rational behavior.  Individuals that cooperate are rational and individuals 

that do not are not.  Gauthier justifies this alteration of rational choice by stating that “the 

theory of rational choice is an ongoing enterprise.”8  However, to redefine rationality as 

he does is to assume away the Prisoners’ Dilemma.  By assuming that immediate 

defection is irrational, he does not have to address the weighty issue of overcoming 

cheating in the Prisoners’ Dilemma.            

 

1.5 Rational Choice Game Theoretic Approach 

Recall the PD situation described earlier.  The dominant strategy and resulting 

unique equilibrium, is for both players to defect, but this equilibrium is not Pareto 

optimal.  The goal of realizing an adequate solution to Prisoners’ Dilemma has yet to be 
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realized, but game theory provides some additional insights and conclusions for certain 

situations.  A commonly suggested solution is to alter the payoffs of the PD so as to 

provide incentive for the players to choose the cooperative strategy.  

In the Emergence of Norms, Ullman-Margalit (1977) describes an example which 

she refers to as the Mortarmen’s Dilemma that details the affects of changing the payoffs 

on the moves players make.  The initial Mortarmen’s Dilemma takes the form of the 

Prisoners’ Dilemma, and the story goes as follows: two mortarmen are at separate but 

near by outposts, and they are about to face an enemy attack.  Each mortarman may either 

leave his outpost to escape the attack or stay and fight.  The story has three possible 

outcomes, if both soldiers stay and fight, the enemy is repelled, if both soldiers flee, they 

are over-run by the enemy and taken as prisoners, and if one stays and the other flees, the 

soldier that stays resists the enemy long enough so that the other soldier is able to escape 

but is eventually killed.  The dilemma takes the form of the following matrix:  

  B 
  Remain Desert 

Remain 1, 1 -2, 2 
 
 
 

A 

Desert 2, -2 -1, -1 

 
 Matrix 3. 

Each soldier realizes that regardless of the action of the other soldier, he is better 

off fleeing the scene.  This logic results in the Pareto-inferior equilibrium of both soldiers 

deserting even when both would prefer both stayed.  The Mortamen’s Dilemma can be 

solved by altering the payoff structure to make remaining at one’s post more desirable 
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than fleeing.  The first alteration Ullman-Margalit considers is minelaying where mines 

are laid surrounding both soldiers’ posts.  The payoff remains the same for remaining at 

the post, given either move by the other soldier, but if a soldier tries to flee, he is killed 

by a mine.  This results in the following matrix:   

  B 
  Remain Desert 

Remain 1, 1 -2, -2 
 
 
 

A 

Desert -2, -2 -2, -2 

 
 Matrix 4. 

Now, both soldiers will remain at their post because if they desert they are 

committing to death, and the only way to escape the situation alive is by remaining at the 

post.  While laying mines seems like a brutal enforcement policy, it is preferred by both 

players because it guarantees a better outcome than when players are free to desert 

without cost.   

 Ullman-Margalit goes on to describe a situation where the soldiers are part of a 

society where honor is internalized and soldiers prefer to die honorably in battle than be 

taken as a captive and live in disgrace as a deserter.  The matrix is given as follows:   

  B 
  Remain Desert 

 
 
 

Remain 1, 1 -1, 0 
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A 
Desert 0, -1 -2, -2 

 
 Matrix 5. 

 To remain is the best strategy of a soldier given whether the other soldier remains 

or deserts, and it should be noted that honor functions not only as a punishment for those 

who desert but also as an award for those who die honorably.  By changing the payoff 

structures, an incentive to cooperate is created, and an inspection of matrices 4 and 5 will 

reveal that these no longer look like the original PD matrix.  While this solves the PD, it 

is through exogenous action, and it does not seem to follow the hypothesis that 

cooperation can be achieved even without the presence of enforcement. 

Now, consider a scenario where the Prisoners’ Dilemma repeats.  In contrast to 

the single-shot PD, collusion is possible between rational players when the PD repeats.  

However, when the PD is finitely repeated, both players know when the last period of the 

game will occur, and collusion is not a possible equilibrium strategy because it is not a 

subgame perfect equilibrium (SPE).  A SPE is defined as a strategy pair that constitutes a 

Nash equilibrium for each proper subgame as well as for the entire game.  Backward 

induction is used to determine the rational strategy for each period, and the logic is as 

follows: in the last period of a finitely repeated PD, defect is clearly the dominant 

strategy since there is no future outcome to influence.  In the second to last period, defect 

is the dominant strategy because it will return a higher payoff given either of the possible 

strategies of the other player and given that rational players will defect in the last period.  

This logic continues backward through the game until it is deduced that rational players 

will defect in every period of the repeated period game.  The outcome suggested by 
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backward induction is drastically different from the outcome Gauthier assumes, that 

players will cooperate.  The logic of backward induction cannot be overlooked in 

defining equilibrium play, and further analysis is necessary to determine when 

individuals would cooperate consistently with subgame perfect equilibrium.   

In the more general case of repetition, when repetition is infinite, collusion is 

achievable because backward induction, from a known final period, is no longer the basis 

for determining equilibrium play.  Contingent strategies, strategies based on the play of 

the opposing player in the previous period are now strategically viable.  For example, a 

tit-for-tat strategy (TFT) is a specific type of contingent strategy where those using it start 

the game with collude, and after the first period, collude if the other player colluded in 

the previous period and defect if the other player defected in the previous period.  A 

player employing this strategy will thus collude as long as the other player colludes and 

defect as long as the other player defects. 

Contingent strategies make collusion possible, and they foster an outcome much 

more efficient than a strategy of only defect.  When rational players determine if the TFT 

strategy is part of a Nash equilibrium pair, they will generally be interested in comparing 

the present value of future collusion with the value of immediate defection.  In games 

where the Prisoners’ Dilemma repeats indefinitely, contingent strategies are also 

strategically viable.  The indefinitely repeated Prisoners’ Dilemma is a more realistic 

account of repeated PD interaction, but in addition to the considerations in the infinitely 

repeated, players, when determining the rational strategy, now must also consider the 

probability that the game will end in the next period.       
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In games with an infinitely repeating or indefinitely repeating Prisoners’ 

Dilemmas, collusion is part of a viable strategy.  However, the only rational strategy in a 

finitely repeated PD is universal defection thwarting the attempt to explain collusion 

through rational game theory.  The next section will address the PD in an evolutionary 

framework to explore if greater results can be obtained.   

 

1.6 Evolutionary Game Theoretic Approach 

 In evolutionary game theory, players are no longer strict utility-maximizers, rather 

they behave as a type.  Each move a type plays in a game is dictated according to a 

“preprogrammed” strategy specifying how the player should behave given the specifics 

of the social interaction.  In any strategic interaction, a rational player assesses the 

possible outcomes given his possible strategies, but when a type interacts, he behaves 

strictly according to his strategy without considering costs or benefits of his strategy or 

any other strategy.  In biology, the genetic makeup of an individual, the genotype, 

dictates the behavior of the organism, the phenotype.  Organisms that exhibit a phenotype 

that is better suited to the environment will have a greater probability of reproductive 

success, defined quantitatively as fitness.  Through the process of natural selection, 

organisms with a favorable genotype will tend to survive and increase in number, 

possibly reaching a stable state where the dynamic ceases.  Random mutations of the 

genotype may alter the phenotype and thus the dynamic between organisms.  If the 

mutation is not well suited for its surroundings, it will die out as natural selection favors 

fitter genotypes.  However, if it is better suited to the environment than the other 
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genotypes of the population, it will invade the existing population and come to exist in 

the population at a relatively higher frequency.   

 It was John Maynard Smith who first suggested the applicability of the study of 

biological evolution to social phenomenon.9  In social evolutionary theory, strategies, 

like phenotypes, are determined before any interaction, and they survive and propagate 

based on their fitness.  However, strategies reproduce, not through the genotype, but 

through the adoption by other individuals.  Individuals may adopt behavior for a variety 

of reasons, but the important assumption is that types that are more successful will tend to 

be adopted in greater frequency.  Equilibrium in the population is reached when types no 

longer change frequency over time, and a type is an evolutionary-stable strategy (ESS) if 

it cannot be invaded by other types.    

 Two forms of evolutionary equilibria are possible in a game with two types, 

monomorphic and dimorphic.  A monomorphic equilibrium is an equilibrium in which 

only one type prevails, and a dimorphic equilibrium is an equilibrium where two types 

persist.  A dimorphic equilibrium is defined as the point where the expected payoffs of 

each type are equal for some population distribution, and the equilibrium will be either 

stable or unstable.  A dimorphic equilibrium is stable if types have a higher expected 

payoff when their frequency is lower than at equilibrium.  This causes the population 

distribution to return to the equilibrium when perturbed.  If the types are in an unstable 

equilibrium, each type has a lower expected payoff when at a lower frequency than 

equilibrium.  When this occurs, the population distribution will not return to equilibrium 

if perturbed.  The unstable equilibrium gives a balancing point where, away from this 

point, the replication dynamic pushes the population towards a distribution of all one type.   
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 Similar to the rational choice game, a PD can also be modeled using evolutionary 

game theory.  The game is now played, not between two rational players, but between 

two types.  Assume that the population is composed of two types, a type that always 

confessing (C), and a type that never confesses (NC).  The payoffs are the same as in the 

initial Prisoners’ Dilemma description and repeated here: 

   
 

 Not 
Confess Confess

Not 
Confess 1, 1 -2, 2 

 
 
 
 

Confess 2, -2 -1, -1 

 
 Matrix 6. 

Regardless of which type a C player matches against, the C player will always do 

better than an NC type, and thus C has a greater expected payoff than NC for any 

population distribution.  To explain more formally, let q be the proportion of the 

population that is NC, and (  the proportion that is C, and allow for a large group of 

players where players interact randomly in the form of the Prisoners’ Dilemma.  The 

expected payoff to a C in any one interaction is 

)1 q−

( ) ( )( )2 1 1q q+ − − , and the expected payoff 

to an NC is .  For ( ) ( )( )1 1 2q q+ − − ( )0,1q∈ , it is easy to see that 

, and the expected payoff to a C is always greater than 

the expected payoff to a NC.  A population of all NC is unstable because if an NC 

mutates into a C, the C will have a greater expected payoff and will replicate with a 

greater frequency than the NC types of the population.  When this occurs, C players will 

( ) ( )( ) ( ) ( )( )2 1 1 1 1 2q q q q+ − − > + − −
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continue to replicate in greater frequency for ( )0,1q∈  until the population is composed of 

all C types.  This is a monomorphic equilibrium, and it is stable because if at , a C 

mutates into an NC, the expected payoff to C players continues to be greater for the small 

q, and the replication process will return the population distribution to .  Thus, C is 

an ESS. 

0q =

0q =

 Now, supposed when two types meet, they interact for two periods of the 

Prisoners’ Dilemma.  In a game with multiple periods, a strategy must give a complete 

account of the move a player will use in each period based on the moves of the other 

player in prior periods.  For this game, C types will confess in both periods.  Now, 

instead of NC types, the C types will interact with TFT types where TFTs collude in the 

first period, and in the second period collude if he sees collude in the first period and 

defect if he sees defect.  The payoffs take the following form:  

   
 

 Not 
Confess Confess

Not 
Confess 2, 2 -3, 1 

 
 
 
 

Confess 1, -3 -2, -2 

 
 Matrix 7. 

Let p represent the probability a player is TFT, and let 1 p−  represent the 

probability a player is a C type.  The expected payoff of a TFT player is ( ) ( ) ( )2 1 3p p+ − − , 

and a C type is .  Notice that C types do not always dominate.  Rather, 

when the population is mostly C types, C types have a greater expected payoff, and when 

( ) ( ) ( )1 1 2p p+ − −
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the population is mostly TFT players, TFT players have a greater expected payoff.  

Therefore, neither strategy can be invaded by the other strategy at their respective 

monomorphic equilibria, and therefore, both types are evolutionary stable strategies.  

When the population is initially at a mixture between the two types, an equilibrium is 

possible.  The equilibrium occurs when the payoffs between the types are equal so that 

, and solving for p, the population will be at equilibrium when .  If 

, TFT types will have a greater expected payoff, and the dynamic will push p to 

the stable equilibrium at .  When 

3 2 5p p− = − 3 1/ 2p =

1/ 2p >

1p = 1/ 2p < , the dynamic will move in the opposite 

direction towards .   0p =

 The results of the one-shot evolutionary PD game are the same as the results in a 

one-shot rational choice game.  Comparing the single-shot PD in the rational choice game 

with the single-shot PD as an evolutionary game, “confess” is a Nash equilibrium in the 

rational choice game and an ESS in the evolutionary model.  If rational choice players 

were to play the evolutionary model with two periods of the PD as a single period, two 

Nash equilibria would exist, “confess” and “TFT.”  The pattern is not a random one, 

evolutionary stable strategies must also be Nash equilbria when the game is played by 

rational individuals.  However, while the TFT strategy in the two period game is a Nash 

equilibria, it is not a subgame-perfect equilibrium because rational players will use 

backward induction to determine that “confess” is the dominant strategy.   

 

1.7 Conclusion 

 Gauthier’s assumption of rational cooperation has been proven through rational 

choice game theory to be valid under conditions of infinitely and indefinitely repeated 
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games.  However, the only rational strategy in finitely repeated games is universal defect, 

and this, as of now, defeats Gauthier’s assumption of rational cooperation.  In the 

evolutionary model, a TFT type has proven to resist invasion by a type that always 

defects, but the evolutionary model cannot account for a stable evolutionary equilibrium 

where both TFT and cheating types coexist.  Thus, only populations of all “confessing” 

or all TFT types are possible, neither of which are acceptable conclusions as this would 

deny the intuition that rational and some form of pre-programmed types exist in society.  

The next chapter, through the right kind of information asymmetry, will attempt to prove 

that cooperation is possible in a finitely repeated PD game.     
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CHAPTER II: TWO PERIOD MODEL 

2.1 Introduction 

 The purpose of this chapter is to determine if “social norms,” interpreted as the 

willingness of players to cooperate in a setting in which “cheating” or “taking advantage” 

might otherwise be expected, can arise in the context of a two period rational choice PD 

game.  Kreps et al.10 explain the possibility of collusion in finitely repeated game through 

the incorporation of one-sided information asymmetry.  Starting with this approach, this 

chapter will extend Kreps et al. to incorporate two sided information asymmetry, and it 

will investigate whether rational players’ beliefs regarding player types is consistent with 

a stable evolutionary equilibrium.   

 Kreps et al. describe a scenario in which it is possible for two types of players to 

exist, rational and TFT.  In each period, rational players choose the strategy that yields 

the greatest payoff while TFT players are “programmed” to choose a strategy that is 

based on the strategy of the other player in the previous period.  Specifically, TFT players 

respond to collude in the previous period with collude and defect with defect.  In Kreps, 

et al. when two rational players meet, Player A and Player B, they interact in a repeated 

PD where the end period is common knowledge.  Player A is fully informed of Player 

B’s type, and Player B assesses that Player A is a TFT player with some positive 

probability.  If Player A’s type were to become common knowledge, the game becomes a 

finitely repeated PD game where universal defection is the only subgame-perfect 

equilibrium.  Player B will collude if his expected payoff from colluding in the current 

and future periods is greater than the expected payoff from defecting in the current period.  

Given this, it will be in Player A’s best interest, even though he knows that Player B is a 



 Burke 23

rational player, to collude when his expected payoff from collusion is greater than his 

expected payoff from defecting in the current period.  Thus, under these circumstances, 

Player A deceives Player B into thinking that he is a TFT player because it yields a 

greater payoff, and Player B colludes because it improves his payoff as well.  As long as 

Player A’s type does not become common knowledge, collusion is possible in a finitely 

repeated PD.11  By extending the Kreps et al. story to two-sided asymmetry regarding 

player types, a more complete account of collusion in a finitely repeated game is 

available.  It can now be assumed that rational players come to the game without any 

prior knowledge of the opposing player where each rational player’s belief about the 

opposing player’s type is based solely on the prior probability the player is TFT and on 

the equilibrium play of the player.   

 The assumption of Kreps et al. that a rational player believes the opposing player 

is irrational with some probability is more consistent with evolutionary game theoretic 

analysis.  These irrational players, using a tit-for-tat strategy, do not choose the strategy 

that offers the highest expected payoff, instead playing their pre-programmed strategy 

regardless of the situation.  While these TFT players appear irrational in a rational choice 

game, an evolutionary story suggests that TFT behavior is learned based expectation that 

it will provide a high payoff relative to other possible strategies.  The replication process 

of the TFT type can only be modeled in an evolutionary game, and it is through these 

means that whether or not TFT types will persist in a population with rational players can 

be determined.   
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2.2 Two-Period Rational Choice Game 

 

The Model 

 The game of concern is a repeated two-person noncooperative game.  Each period 

( 1, 2) consists of a Prisoners’ Dilemma (PD) where  and 12=n bxa >>> 0 xba 2<+  

with the following normal form:  

  Player B 

  Collude Defect 

Collude x, x b, a 
 

Player A 

Defect a, b 0, 0 

 

Players move simultaneously in each period, and payoffs for the supergame are the 

undiscounted sum of single-period payoffs.  Players are fully informed of the number of 

remaining periods and of the previous moves of both players, but each player’s type is 

not common knowledge.  Two types exist, rational and tit-for tat (TFT), where the prior 

probability that a given player is TFT is represented by ( )0,1δ ∈ , and the prior 

probability that a player is rational is δ−1 .  Rational players use strategies that are part 

of a subgame perfect equilibrium strategy pair where it is required that the strategy be 

rational for each period of the game as well as for the whole game.  Since the subgame 

perfect equilbria for the game are unknown at this point, backward induction must be 

employed, starting from the last period as in the following lemma, to determine which 

equilibrium path will result.     
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Subgame perfect equilibrium in the 2-period PD supergame 

 LEMMA 1: Rational players always defect in the last period, regardless of 

information about their opponent’s type. 

 

 PROOF: In the last period, defect is the dominant strategy because it returns a 

higher payoff than collude against defect as  and a higher payoff against collude as b>0

xa > .  Therefore, a rational player will defect whether the opponent is rational or TFT.  

Q.E.D.     

 

 PROPOSITION: In a two period rational choice PD game where each period is 

in the form of a PD, i) if ( ) ( ){ }max ,V a V bδ > , ( )( ), ,c d c d⎡ ⎤⎣ ⎦  is a unique SPE, ii) if 

x a b> +  and , ( ) ( ),V a V bδ ∈⎡ ⎤⎣ ⎦ ( )( ), ,c d c d⎡ ⎤⎣ ⎦  and ( )( ), ,d d d d⎡ ⎤⎣ ⎦  are both SPEs, and a 

mixed strategy equilibrium is possible where rational players use (c,d) with a probability 

of *
iσ  given by ( ) ( ) [ ]( )* / 1i b x b x a bσ δ δ⎡ ⎤= − − − − +⎡ ⎤⎣ ⎦ ⎣ ⎦ , iii) if ( ) ( )( ),V a V bδ ∈  both 

 and  are SPEs, and if rational players mix strategies they will 

again  use (c,d) with a probability of 

( ) ( ), ,c d d d⎡ ⎤⎣ ⎦ ( )( ), ,d d c d⎡⎣ ⎤⎦

*
iσ  given by ( ) ( ) [ ]( )* / 1i b x b x a bσ δ δ⎡ ⎤= − − − − +⎡ ⎤⎣ ⎦ ⎣ ⎦ , 

and iv) if ( ) ( ){ }min ,V a V bδ < , ( ) ( ), ,d d d d⎡⎣ ⎤⎦  is a unique SPE.   

 

 PROOF: Following from lemma 1, in 2=n , both rational players will always 

defect, and the question becomes whether or not a rational player should collude in 1n = .  

The strategy (c,d) is an equilibrium response to (c,d) if it maximizes a rational player’s 
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payoff.  Now, suppose two rational players, Player A and Player B, meet, and Player B 

chooses ( .  Player A will receive a payoff of 0 in ),c d 2=n  as both players defect.  If 

Player A colludes in , he will receive an immediate payoff of x, and if he defects, he 

will receive an immediate payoff of a.  If Player A meets a TFT player, in , Player 

A will receive an immediate payoff of a if he defects and x if he colludes as a TFT player 

always colludes in the first period.  Given that Player A will defect in the last period and 

that the TFT player will respond to collude with collude and defect with defect, Player A 

will receive a payoff of a if he colluded in 

1=n

1=n

1=n  and 0 if he defected.  Player A assesses 

the probability that he will meet a TFT player as δ  and δ−1  as the probability he will 

meet a rational player.  The expected payoff for Player A using the strategy  is thus ( ,c d )

xa +δ , and if he uses ( ),d d his expected payoff is a.  Player A will prefer playing ( )  

over  (

,c d

),d d  when xaa +≤ δ , and therefore, ( ),c d  is an SPE strategy pair when ( )V aδ ≥ .  

Again, suppose two players meet, however this time, let Player B use the strategy 

( ),d d .  When Players A and B meet, Player A will receive a payoff of b if he colludes in 

, and 0 if he defects.  In , Player A will receive a payoff of 0.  When Player A 

meets a TFT player, the payoffs for the game are the same as above, 

1=n 2=n

ax +  if he uses 

 and  if he uses (( ,c d ) a ),d d .  Again, Player A assess the probability that the other player 

is a TFT player as δ , and the expected game payoff for using ( ),c d  is  

and for using (

( ) ( )bax δδ −++ 1

),d d  is aδ .  When ( ) ( )baxa δδδ −++≥ 1  ( ),d d  is an SPE strategy pair, and 

solving for δ , when .  When ( )V bδ ≤ ( ) ( ){ }max ,V a V bδ > , ( )( ), ,c d c d⎡ ⎤⎣ ⎦  is a unique SPE 
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as ( ) ( ), ,d d d d⎡⎣ ⎤⎦  is not an SPE, and when ( ) ( ){ }min ,V a V bδ < , ( )( ), ,d d d d⎡ ⎤⎣ ⎦  is unique as 

 is no longer an SPE. ( )( ), ,c d c d⎡⎣ ⎤⎦

If  and ( ) ( )V b V aδ< < x a b< +  neither ( ) ( ), ,c d c d⎡ ⎤⎣ ⎦  and ( )( ), ,d d d d⎡ ⎤⎣ ⎦  are SPEs.  

Now, assume that when this occurs, two rational players meet, Player A and Player B, 

and  Player B uses ( ),d d .   If Player A uses ( ),c d , he will have an expected payoff of 

( ) ( )1x a bδ δ+ + −  and if he uses ( ),d d , he will have an expected payoff of aδ .  Player A 

will play (  over (),c d ),d d  when ( )V bδ < .  Now assume that Player A uses ( .  If 

Player B plays (  his expected payoff will be 

)

)

,c d

,c d x aδ+ , and if he plays ( ),d d  his 

expected payoff will be a .  So Player B will use ( ),c d  when ( )V aδ < .  Additionally, for 

these strategy pairs to be SPEs, the opposite must be true: if A plays ( ),d d , B must want 

to play ( , and when A plays ),c d ( ),c d , B must want to play ( ),d d .   

The payoffs are symmetrical, and therefore it follows that B will play ( ),c d  when 

, and A will play (( )V bδ > ),d d  when ( )V aδ < .  Thus, ( ) ( ), ,c d d d⎡ ⎤⎣ ⎦  and  

are SPEs when . 

( )( ), ,d d c d⎡ ⎤⎣ ⎦

( ) ( )V b V aδ< <

Mixed strategy equilibria are also possible equilibria in this rational choice game.  

Assume that when two rational players meet, Player A and Player B, Player B uses ( ),c d  

with a probability of Bσ  and ( ),d d  with a probability of 1 Bσ− .  The expected payoff for 

Player A, represented as ( )AE π , when Player A uses ( ),c d  is given by 

( ) ( ) ( ) ( ) ( )1A B B 1E x a x a bπ σ δ σ δ δ= + + − + + −⎡⎣ ⎤⎦ , and the expected payoff for Player A 
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when he uses (  is given by ),d d ( ) ( ) ( )( )1A B BE a aπ σ σ= + − δ

)

.  Now, assume that Player A 

uses (  with a probability of ,c d Aσ , his expected payoff will then be given by  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1 1

1 1 .

A A B B

A B B

E x a x a b

a a

π σ σ δ σ δ δ

σ σ σ δ

= + + − + + −⎡ ⎤⎣ ⎦

+ − + −⎡ ⎤⎣ ⎦

  

Assuming that a mixed strategy equilibrium exists, such that ( )* 0,1iσ ∈ , , to 

determine the point at which Player B is indifferent to Player A’s mix of strategies, take 

the first order condition for this payoff function with respect to 

A,Bi =

Aσ : 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

/ 1

1 0.
A A B B

B B

dE d x a x a b

a a

π σ σ δ σ δ δ

σ σ δ

= + + − + + −1⎡ ⎤⎣ ⎦
− + − =⎡ ⎤⎣ ⎦

 

Solving for *
Bσ  yields ( ) ( ) [ ]( )* / 1B b x b x a bσ δ δ⎡ ⎤= − − − − +⎡ ⎤⎣ ⎦ ⎣ ⎦ , and this is the optimal mix 

for Player B, the point at which Player A is indifferent between either strategy Player B 

chooses.  It follows that since the expected payoffs between Players A and B are 

symmetrical, *
Aσ , the point at which Player B is indifferent between the strategy Player 

A uses is given by ( ) ( ) [ ]( )* / 1A b x b x a bσ δ δ⎡ ⎤= − − − − +⎡ ⎤⎣ ⎦ ⎣ ⎦ , the same value for *
Bσ .  Thus 

all rational players, when mixed strategies are available, use (c,d) with a probability of 

*σ  where ( ) ( ) [ ]( )* / 1b x b x a bσ δ δ⎡ ⎤= − − − − +⎡ ⎤⎣ ⎦ ⎣ ⎦ .  Q.E.D. 

 

 So, to no surprise, (d,d) is an SPE for the two-period game, but interestingly 

enough, (c,d) is an SPE for a certain range of δ  as well.  The belief of rational players 

that 0δ >  needs to be confirmed in the evolutionary game, but first a brief analysis of the 

situation where both (d,d) and (c,d) are equilibria will be addressed.     

 



 Burke 29

The coordination game, as an aside 

A Coordination game is a game with multiple Nash equilibriums where players 

are not competing for the highest payoff, but rather both players prefer the same 

equilibrium.  If x a b> +  and ( ) ( ),V a V bδ ∈⎡ ⎤⎣ ⎦ , a coordination game ensues as both 

 and ( )( ), ,c d c d⎡ ⎤⎣ ⎦ ( )( ), ,d d d d⎡⎣ ⎤⎦  are SPEs.  While, for the sake of this model, rational 

players will be assumed to converge at the Pareto-dominant equilibrium of , 

in reality equilibrium selection is more complex.  A coordination failure may arise in a 

game with two equilibria if players are unable to select the same equilibrium strategy.  

The equilibria of the coordination game may be Pareto-ranked meaning that a particular 

equilibrium will provide both players with a greater payoff than if the players were at a 

different equilibrium.  The Pareto-dominant equilibrium is the natural focal point in the 

game as it is the equilibrium that both players would unequivocally prefer.  Even though 

the Pareto-dominant equilibrium is the natural focal point, it does not guarantee that 

players choose the Pareto dominant strategy.  Experimentally, players are often show 

selecting strategies other than the Pareto-dominant strategy, and Cooper provides an 

extensive survey of this experimental literature.

( )( ), ,c d c d⎡ ⎤⎣ ⎦

13   

 To guarantee a Pareto-dominant strategy is chosen, a player needs to know, with 

complete certainty, that the other player will choose the Pareto-dominant strategy.  

Players may use cheap talk, make strategic moves, or follow social norms in an attempt 

to achieve the Pareto-dominant equilibrium.  Cheap talk is an opportunity for players to 

send costless messages to the other player signaling that a specific strategy will be chosen.  

Strategic moves, similar to cheap talk, are actions taken by players used to signal a 

specific strategy.  Social norms pertaining to coordination games are somewhat different 
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than PD norms as the interests of the players are not opposed.  However, they operate 

similarly and may guide strategy toward the optimal group outcome.  These tools for 

determining and signaling a strategy are non-binding, and while they may make it more 

likely that a specific strategy is chosen, they make no guarantee.  Some chance continues 

to exist that a player will not choose the Pareto-dominant equilibrium. 

 In an attempt to explain the evidence that coordination problems are not solved 

naturally in noncooperative games, Harsanyi and Selten argue that players consider risk 

dominance when choosing a strategy.14  In a coordination game, playing the Pareto-

dominant strategy is riskier than the alternate strategy, and because of this, a player must 

make a trade-off between risk and return when choosing a strategy.  The decision to play 

the Pareto-dominant strategy depends on the probability that the other player will play the 

Pareto-dominant strategy.  The higher the probability that the other player will choose the 

Pareto-dominant strategy, the more likely a rational player will choose the Pareto-

dominant strategy.  A strategy is risk dominant when the strategy provides the greatest 

expected payoff given the probability that the opposing player will use that strategy.  The 

risk dominant equilibrium may support the Pareto-dominant equilibrium, but this is not 

necessarily so.   

 Given some expectation of the probability a player will choose a strategy, risk 

dominance explains equilibrium selection in coordination games.  However, Harsanyi 

and Selten’s solution does not provide an explanation for why a rational player should 

expect another player to behave in this manner.  A rational player may assign some 

probability to another player’s strategy selection based on the existence of incomplete 

information, or in an evolutionary model, based on the possibility of mutations.  Papers 
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by Carlsson and van Damme and Kandori, et al. incorporate these ideas in a game 

theoretic framework to give credibility to the expectations of a rational player.  Both of 

these papers achieve results that are consistent with the risk dominance theory of 

Harsanyi and Selten.       

 In Carlsson and van Damme’s paper, incomplete information is used to explain 

equilibrium selection in coordination games. 15  Carlsson and van Damme create a 

coordination game where the payoff of an equilibrium, equilibrium A for example, is 

uniformly distributed around the Pareto-dominant payoff allowing for the possibility that 

equilibrium A is not the Pareto-dominant equilibrium.  Players do not know the payoff of 

equilibrium A, but they observe a signal that is correlated with this payoff.  After 

receiving the signal, players do not know the exact payoff they will receive based on the 

strategy they choose.  Players understand a possibility exists that the other player 

received a signal revealing equilibrium A as Pareto-inferior.  Each player chooses their 

strategy given the available information, and the strategy chosen is dependent upon the 

payoff range of equilibrium A and of the strength of the signal.   

 Risk dominance may also be justified by the existence of mutations in an 

evolutionary framework.  Mutations cause strategies to be chosen that are not optimal, 

and this creates additional noise in the equilibrium system.  A rational player will use the 

mutation rate to determine the probability another player will choose the Pareto-inferior 

equilibrium.  In Kandori et al., mutations reflect players’ inability observe and interpret 

the information necessary to calculate an optimal strategy, and also players’ inability to 

act upon the information they receive. 16  Kandori et al. provide a more detailed analysis, 
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and they are able to show that the long run equilibrium tends towards the risk dominance 

equilibrium of Harsanyi and Selten. 

Returning to the two period rational choice game, if x a b> +  and ( ) ( ),V a V bδ ∈⎡ ⎤⎣ ⎦  

and the coordination game occurs, rational players will use the strategy ( , the Pareto-

dominant strategy, when it is the risk dominant strategy.  To determine when the Pareto-

dominant strategy is also the risk dominant strategy, let 

),c d

( )sV  be the net gain a rational 

player will receive from choosing (c,d)  over (d,d) when the opposing player uses (c,d) 

with a probability of s and (d,d) with a probability of 1 s− .  The expected payoff to the 

rational player using the strategy of ( ),c d  is ( ) ( ) ( )[ ]bssxax −+−++ 11 δδ , and the expected 

payoff when using ( ),d d  is ( )saa δδ −+ 1 .  Thus, the net gain for a rational player 

choosing (  is given by ),c d ( ) ( ) ( ) ( )[ ] ( )[ ]saabssxaxsV δδδδ −+−−+−++= 111 .  To evaluate s, 

we need to look at the point where the rational player is indifferent between the two 

strategies.  This occurs when , and when ( ) 0=sV ( ) 0=sV , 

( ) ( )* /s b x b b x a x b aδ δ= − − − + + − −⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎤⎦ .  It follows that if rational players expect to face 

an opponent that uses (c,d) with a probability of s, then when *s s≥ , the Pareto-dominant 

equilibrium equals the risk dominant equilibrium and rational players will use the 

strategy (c,d).  When *s s< , the Pareto-inferior equilibrium is risk dominant and rational 

players use (d,d).  For the remainder of the paper it will be assumed that rational players 

choose the Pareto-optimal equilibrium strategy when a coordination game occurs, but the 

coordination game adds an extra layer of analysis and possibly a topic for further research.     
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3.3 Evolutionary Model with Two Period Payoffs  

 The belief of rational players that 0>δ  in the previous model is robust with 

respect to evolutionary processes if rational and TFT players are present in an 

equilibrium of an evolutionary game with the relevant frequencies.  To study rational 

players in the context of an evolutionary game, rational players must also be considered 

types, here called maximizing types, and they are assumed to use a payoff maximizing 

strategy consistent with the previous rational choice game.  The results of the rational 

choice game are abbreviated for the evolutionary model to simplify the results.  The 

mixed strategy equilibrium as well as the two equilibria, ( ) ( ), ,c d d d⎡ ⎤⎣ ⎦  and , 

for their respective range of 

( )( ), ,d d c d⎡ ⎤⎣ ⎦

δ .  This simplification should not dilute the results.   

 

The Model 

The following model is used to describe the evolutionary process and equilibrium 

conditions for a group of maximizing and TFT types, and it builds on the analysis of 

cultural equilibrium and type replication of Bowles and Gintis (1998):17  suppose a 

population exists with a large number of individuals of both maximizing (m) and TFT (t) 

types.  The members of the population interact randomly in pairs in the form of the two-

period rational choice game of 3.2, and attention will continue to be restricted to the 

subgame-perfect equilibrium strategies of maximizing types for the ranges of δ  

previously described.  At the end of a game, each player compares his expected payoff to 

the expected payoff of a random player.  If the “other” player has a higher payoff, and if 

the “other” player is a different type, the player will tend to replace himself with the other 

type.  If the “other” player has a lower payoff, the player will do nothing.   
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 The expected future payoffs for each type are calculated using the probability of 

meeting each type of player (δ  for TFT types and ( )1 δ−  for maximizing types), and the 

payoffs for playing each strategy against a TFT or maximizing strategy.  The expected 

payoff for a maximizing type is given by ( ) =δmb ( ) ( ) ( ), 1 ,m t m mδπ δ π+ − , and the 

expected payoff for a TFT type is given by ( ) =δtb ( ) ( ) ( ), 1 ,t t t mδπ δ π+ −  where ( )ji,π  

represents the payoff to a player of type i in the supergame with a player of the type j.  

The expected payoffs for maximizing and TFT types are represented by ( )mb δ  and 

( )tb δ  respectively.  The growth rate of δ  over time is represented by , and this is 

given by 

tr

( ) ( )δδ bbr tt −=  where ( )δb  is the average payoff within the group and is 

represented by ( ) ( ) ( )1tb mbδ δ δ+ − δ

))

.  This expression simplifies so that 

( ) ( ) ((1t t mr b bδ δ δ= − − .  Types are in equilibrium when evolution, defined as the 

process where the frequency of types changes over time, no longer occurs. 

From ( ) ( ) ( )(1t t mr b b )δ δ δ= − − , it follows that the population is in equilibrium 

when .  If , , and the population is at a monomorphic equilibrium of all 

TFT types.  This is a stable equilibrium if, for a value of 

0tr ≤ * 1δ = 0tr =

δ  slightly below 1, 

( ) ( )t mb bδ δ> .  At , maximizing types are in a monomorphic equilibrium if * 0δ =

( ) ( )t mb bδ δ≤  so that , and if 0tr ≤ ( ) ( )t mb bδ δ< , the equilibrium is stable.  A 

dimorphic equilibrium is also possible, and this will occur if ( ) (t mb b )δ δ= .  The 

equilibrium is stable at some value [ ]* 0,1δ ∈  if a small increase or decrease in δ  is 

naturally corrected back to *δ  so that /tdr d 0δ < .  This means that 
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( ) ( ) ( ) ( ), , , ,m t m m t t t mπ π π π− − + 0> 18 must be true for all stable dimorphic equilibria, 

and if this requirement does not hold, the types are in a unstable equilibrium at *δ .     

 

Evolutionary Equilibria 

 PROPOSITION: Assuming maximizing types use only pure strategies, and that 

when multiple subgame perfect equilibria exist maximizing players use the Pareto-

dominant strategy, when 1<δ , a monomorphic equilibrium of maximizing types is the 

only equilibrium, and it is evolutionarily stable.  At 1=δ , TFT types are in an unstable 

monomorphic equilibrium. 

  

 PROOF: Given the conditions for equilibrium,  

I. in an evolutionary game, TFT and maximizing types, using the strategy (d,d), are in 

equilibrium when their expected payoffs are equal so  that ( )2 1a x bδ δ= + −δ .  This 

equality will be true for some δ , given the payoffs of the PD, when , and 

this must be true for the initial conditions specified.  Solving for 

xba 2<+

δ  at the dimorphic 

equilibrium, .  For this equilibrium to exist, (d,d) must be an SPE at (* /b a b xδ = + − )2

*δ , and this is true when ( xbab 2/ )−+  is less than ( )xbb −/ .  However, this is never 

true so that at *δ , maximizing types use (c,d), and no equilibrium between maximizing 

types using (d,d) and TFT types is possible.  When maximizing types use (d,d), they 

have a greater expected payoff than TFT types, and the replication process will cause 

δ  to decrease until an equilibrium at 0=δ  is reached.  This equilibrium is stable 

because for δ  close to 0, ( ) ( )t mb bδ δ< .     
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II. When a maximizing type uses the strategy (c,d), his expected payoff is a xδ + , and the 

expected payoff of a TFT type is ( ) ( )1 1x bδ δ+ + − .  At the dimorphic equilibrium, 

( ) ( )δδδ −++=+ 11 bxxa , but this statement is unambiguously false as a xδ +  will 

always be greater than ( ) ( )1 1x bδ δ+ + − .  Therefore, no dimorphic equilibrium exists 

between the two.     

a. At 1=δ , TFT types are in equilibrium as the frequency of types is unchanging.  

This equilibrium cannot be stable because ( ) ( )t mb bδ δ<  for a δ  close to 1, 

and when maximizing types invade a population of TFT types, the replication 

dynamic will cause δ  to decrease.   

b.  When 1<δ , maximizing types using (c,d) have a greater expected payoff than 

TFT types, and δ  decreases until ( )V aδ <  at which point (c,d) is no longer an 

SPE, and maximizing types use (d,d) as a strategy.  Q.E.D.   

 

 The only stable evolutionary equilibrium is one with all rational players using the 

strategy of (d,d).  This is a powerful result because, while Kreps et al. provide a general 

case for cooperation and do not specify the necessary number of periods for rational 

players to cooperate, their results are not applicable to a two period game with two-sided 

asymmetry.  It seems intuitive that as the number of periods increases the expected 

payoff for cooperative players will increase.  Thus, the next step is to perform a similar 

analysis for a game with three periods of the Prisoners’ Dilemma.   
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CHAPTER III: THREE PERIOD MODEL 

3.1 Introduction 

 The purpose of this chapter is to determine the implications of extending the two-

period model with two-sided information asymmetry about player types developed 

previously to a scenario with two repetitions of the Prisoners’ Dilemma ( 1, 2, 3).  

Now, strategy choices of rational players affect future payoffs, in addition to current 

payoffs through the effect of strategies on the updating beliefs of the opposing player.  In 

this model, rational players update their beliefs about player types after each period of the 

game using Bayes’ Rule based on equilibrium play.  Moves in the current period are 

determined in accordance with beliefs about player types deduced from the prior periods 

of the game.  A complete strategy now must in general specify a rational player’s move 

in each period given the possible moves of the other player in prior periods.  As in the 

two period model, the plausibility of the Kreps et al. story regarding cooperation among 

rational players in a finitely repeated PD will continue to be evaluated in an evolutionary 

context.  For the story to hold, 

=n

0>δ  must be consistent with a stable evolutionary 

equilibrium.   

 

3.2 Three Period Rational Choice Game 

 According to the subgame perfect equilibrium requirement, in a sequential move 

game, at any point in the game, a rational player will choose the strategy that optimizes 

his payoff in the current period and over the remainder of the game.  Given uncertainty 

about player types, rational players need also consider the available information about the 

opposing player’s type when determining a strategy.  In addition to the SPE requirement, 
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a Bayesian perfect equilibrium (BPE) requires that, at any point in the game, players 

assess the probabilities of other players’ types using Bayes’ rule and assuming 

equilibrium play up to the current period and in future periods.  BPE also requires that 

players choose the optimal strategy in light of this information.  At any point in the game, 

a rational player, Player i, uses Bayes’ law to assess the probability that the other player, 

a rational Player j, is TFT where  represents the posterior probability assessed by 

Player i in period n that Player j is TFT.  Likewise, in period n, Player j assesses the 

probability that Player i is TFT, and this is represented by 

i
nz

j
nz .   

 Now consider the three-period PD supergame introduced earlier.  Since we do not 

know yet what the Bayesian Perfect equilibria are for this game, to determine which 

equilibrium path will result for a range of , we must build up to it by backward 

induction.  Therefore, consider the situation in 

i
nz

3n = , the last period.  For any value of , 

Player i will always defect in the last period as it is the dominant strategy for the one-shot 

PD game.  The TFT player, on the other hand, will use a strategy dependent on the 

opponent’s move in the previous period. 

3
iz

Given the outcomes in 3n = , now consider the strategic setting in period .  

We know from the two period model that in the second period, defection is consistent 

with SPE if  and is uniquely so if 

2n =

( )2
iz V b≤ ( ) ( ){ }2 min ,iz V a V< b .  Collusion is consistent 

with SPE in the second period if ( )2
iz V a≥  and is uniquely so if ( ) ( ){ }2 max ,iz V a V> b .  

Player i derives  based on the opponent’s move in 2
iz 1n =  in accordance with Bayes’ rule 

and with the assumption that the other player is using an equilibrium strategy, in so far as 

possible.  If Player i sees defect in 1n =  when he expected both players to collude, Player 
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i will update in a similar fashion as the rational players of Kreps et al.  Player i will 

conclude that since defection is a possible move in the first period of rational players but 

not TFT players, then the opposing player must be rational.  The equilibrium move of a 

Player i in  depends both on , the updated belief of Player i, and his own move in 

.  In the first period,  is equal to the prior probability 

2n = 2
iz

1n = 1
iz δ  that a player is TFT.  In 

the following lemma, the derivation of the posterior probability a player is TFT is 

considered.  The following model will not pursue mixed equilibria strategy or the non-

symmetrical strategies for the simplicity of the model.     

 

 LEMMA 1: If a rational opponent, Player B, is expected to collude in the first 

period, a rational player, Player A, will infer that 2
Az δ=  if the opponent colludes and 

 if the opponent defects.  If a rational opponent is expected to defect in the first 

period, Player A will infer  if he sees defection in 

2 0Az =

2 0Az = 1=n , and will infer  if he 

sees collusion in 

2 1Az =

1=n . 

 

 PROOF: Given that a rational opponent is expected to collude in , if a 

rational player sees collude in 

1=n

1=n , 2
Az δ=  because he expects both types of players to 

collude with a probability of 1 in 1=n .  The probability a player is TFT given the move 

used by the other player in the previous period is equal to 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2Pr Pr / Pr Pr Pr PrD C D D C D D C D+⎡ ⎤ ⎡ 2⎣ ⎦ ⎣ ⎤⎦  where C  is the observed 

play of the other player,  is a TFT player, and  is a rational player.  When Player A 

expects both players to collude, C, with a probability of 1,  is determined as follows 

1D 2D

2
Az
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where  and ( ) 1Pr 1 =DC ( ) 1Pr 2 =DC  so ( ) ( )( )[ ] ( )( ) ( )( )[ ]111/1Pr 1 δδδ +−=CD , and 

therefore, ( )1 2Pr AD C z δ= = . 

  If the other player instead chose to defect in 1=n  when Player A expected that 

his opponent would collude if rational in 1=n , then Player A determines that since it is 

only possible for rational players to defect in 1=n , the probability a TFT type will defect, 

C, is given by , and it follows that ( ) 0Pr 1 =DC ( ) ( )( )[ ] ( )( ) ( )( )[ ]011/0Pr 1 δδδ +−=CD  

and . ( )1 2Pr 0AD C z= =

Alternatively, if a rational opponent is expected to defect in 1=n , then  if 

defection is observed in  since TFT types are always expected to collude in the first 

period.  Let defect be given by C so that 

2 0Az =

1=n

( ) 0Pr 1 =DC  and ( ) 1Pr 2 =DC .  It now follows 

that ( ) ( )( )[ ] ( )( ) ( )( )[ ]011/0Pr 1 δδδ +−=CD  and ( )1 2Pr 0AD C z= = .   By the same 

reasoning,  if the opponent colludes in 2 1Az = 1=n , since the rational player is expected 

to defect, and this is given by ( ) 1Pr 1 =DC  and ( ) 0Pr 2 =DC  where C represents 

collude so that ( ) ( )( )[ ] ( )( ) ( )( )[ ]101/1Pr 1 δδδ +−=CD , and therefore, .  

Q.E.D.          

( )1 2Pr 1AD C z= =

 

LEMMA 2: After , four cases are possible that dictate the optimal strategy of 

a rational player in .  If a rational player colludes in 

1n =

2n = 1n =  and observes collusion, 

(c,d) is a possible equilibrium strategy for the remainder of the game if , and 

(d,d) is a possible equilibrium strategy for the remainder of the game if .  If a 

rational player defects and observes collusion, (c,d) is a possible equilibrium strategy for 

( )V aδ ≥

( )V bδ ≤
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the remainder of the game if /b aδ ≥ − , and (d,d) is a possible equilibrium strategy for 

the remainder of the game if /b aδ < − .  If a rational player colludes or defects in 1n =  

and observes defection, (d,d) is the only possible strategy for the remainder of the game. 

 

PROOF: Assume two rational players meet, Player A and Player B.  If both 

players collude in , 1n = 2
Az δ=  and 2

Bz δ= .  The SPE requirement from the two period 

game, as discussed in the previous chapter, implies that (c,d) is an equilibrium strategy 

for the remainder of the game if ( )V aδ ≥ .  If Player A defects in 1n =  and Player B 

colludes, 2
Az δ=  and .  If the opposing player is Player B, Player B will use (d,d) 

as 

2 0Bz =

( ) ( ){ }2 min ,Bz V a V< b , and if the opposing player is a TFT player, the TFT player 

will defect in  and either collude or defect in 2n = 3n =  depending on the move Player A 

makes in .  If Player A uses (c,d) his expected payoff is 2n = ( ) ( )1b a bδ δ+ + − , and if 

he uses (d,d) his expected payoff is 0.  Using (c,d) is an equilibrium strategy in the 

continuation game for Player A if it yields a payoff greater than or equal to the payoff 

from (d,d), and this occurs if /b aδ ≥ − m and (d,d) is an equilibrium strategy in the 

continuation of the game if /b aδ ≤ − .  If Player A colludes or defects in  and 

Player B defects, , and Player A will defect for the remainder of the game because 

1n =

2 0Az =

( ) ( ){ }2 min ,Az V a V< b .  Q.E.D.     

 

COROLLARY 1: Collusion is possible in 2n =  when ( )V aδ ≥  if a rational 

player sees collusion in  and if the rational player colluded in 1n = 1n = .  Collusion is 

also possible when /b aδ ≥ −  if the opposing player colluded in 1n = , and the rational 
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player defected.  Defection is possible in 2n =  if a rational player sees defection in 1n = , 

or if /b aδ ≤ −  and the rational player defected in 1n = .   

    

 PROPOSITION: Assuming that rational players do not use mixed strategies, the 

strategy [play c in ; in , play c if opponent played c and d if opponent played d; 

play d in ] is a BPE when 

1n = 2n =

3n = ( )V aδ ≥ , the strategy [play d in 1n = ; in , play d if 

opponent played c and d if opponent played d; play d in 

2n =

3n = ] is a BPE when ( )V bδ ≤ , 

and [play c in ; in , play d if opponent played c and d if opponent played d; 

play d in ] is a BPE when 

1n = 2n =

3n = x a b> +  and ( ) ( )V a V bδ≤ ≤ . 

 

 PROOF: Suppose two rational players, A and B, meet, and all rational players, 

including B use the strategy [play d in 1n = ; in 2n = , play d if opponent played c and d if 

opponent played d; play d in ].  After 3n = 1n = , Player A assesses that , and 

therefore the only possible equilibrium strategy in the continuation game is defection.  

This leaves two possible strategies for A to play [play d in 

2 0Az =

1n = ; in 2n = , play d if 

opponent played c and d if opponent played d; play d in 3n = ], and [play c in ; in 

, play d if opponent played c and d if opponent played d; play d in ].  The 

former strategy will return a payoff of 

1n =

2n = 3n =

aδ  as a TFT player will collude in the first period 

and then respond to defect with defect thereafter, and the latter strategy will return a 

payoff of ( ) ( )1a x bδ δ+ + −  as a TFT player colludes in 1n =  and 2n = .  Player A will 

use [play d in ; in , play d if opponent played c and d if opponent played d; play 

d in ] when 

1n = 2n =

3n = ( ) ( )1a a x bδ δ> + + −δ  occurring when ( )V bδ ≤ .  
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Suppose two rational players, A and B, meet, and all rational players, including B 

use the strategy [play c in ; in 1n = 2n = , play c if opponent played c and d if opponent 

played d; play d in ].  Suppose that Player A plays c in 3n = 1n = .  After the first period, 

Player A assesses that 2
Az δ= .  Two strategies are possible for Player A in the 

continuation game, [in , play c if opponent played c and d if opponent played d; play 

d in ] and [in , play d if opponent played c and d if opponent played d; play d in 

].  If Player A uses the former strategy his expected payoff is 

2n =

3n = 2n =

3n = xa 2+δ , and if he uses 

the latter strategy his expected payoff is ax + .  For the strategy [play c in ; in 1n = 2n = , 

play c if opponent played c and d if opponent played d; play d in 3n = ] to be employed, 

 must be true.   ( )V aδ ≥

 If Player A defects in , again two strategies are possible in the continuation 

game, [in , play c if opponent played c and d if opponent played d; play d in 

1n =

2n = 3n = ] 

and [in , play d if opponent played c and d if opponent played d; play d in ].  If 

Player A uses the former strategy his expected payoff will be 

2n = 3n =

( )1a δ b+ + , and the strategy 

[in , play c if opponent played c and d if opponent played d; play d in ] will 

always have a greater expected payoff as 

2n = 3n =

xa 2+δ  will always be greater than  

given the initial condition that 

( )1a bδ + +

2a b x+ < .  If Player A uses [in 2n = , play d if opponent 

played c and d if opponent played d; play d in 3n = ], his expected payoff is a, and Player 

A will use [play c in ; in , play c if opponent played c and d if opponent played 

d; play d in ] when 

1n = 2n =

3n = 2a x aδ + ≥  so that ( ) axa /2−≥δ .  ( )V a  will always be 

greater than ( , and therefore ) axa /2− ( )V aδ ≤  is the bound for [play c in ; in 1n =
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2n = , play c if opponent played c and d if opponent played d; play d in ] as a BPE 

strategy pair.     

3n =

Now, assume that when Player A and B meet, Player B, if rational uses the 

strategy [play c in ; in , play d if opponent played c and d if opponent played d; 

play d in ].  After the first period, Player A concludes that 

1n = 2n =

3n = 2
Az δ= .  If Player A uses 

the same strategy as Player B, his expected payoff is xa +δ  for the entire game.  If he 

uses [play d in ; in , play d if opponent played c and d if opponent played d; 

play d in ], his expected payoff is a as a TFT player will respond to defection in 

 with defect in , and a rational player will defect in 

1n = 2n =

3n =

1n = 2n = 2n =  as is the expected 

move.  If A uses [play c in ; in 1n = 2n = , play c if opponent played c and d if opponent 

played  d; play d in ], his expected payoff is 3n = ( ) ( )( )bxax +−++ δδ 12 .  Comparing 

A’s expected payoff from the strategy [play d in 1n = ; in 2n = , play d if opponent played 

c and d if opponent played d; play d in 3n = ] and from the strategy [play c in ; in 

, play d if opponent played c and d if opponent played d; play d in ], A will 

employ the latter strategy when 

1n =

2n = 3n =

a x aδ + ≥  or that ( )V aδ ≥ .  Now, comparing A’s 

expected payoff when using the strategy [play c in 1n = ; in 2n = , play c if opponent 

played c and d if opponent played d; play d in 3n = ] to using the strategy [play c in 1n = ; 

in , play d if opponent played c and d if opponent played d; play d in ], A will 

use the latter strategy when 

2n = 3n =

( ) ( )( )2 1a x x a x bδ δ δ+ ≥ + + − +  or that .  Given 

these two conditions for 

( )V bδ ≤

δ , Player A will use [play c in 1n = ; in 2n = , play d if opponent 

played c and d if opponent played d; play d in 3n = ] when ( )V a V bδ≤ ≤ ( ) .  If Player A 

uses [play d in ; in , play c if opponent played c and d if opponent played d; 1n = 2n =
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play d in ], he will have an expected payoff of 3n = ( )1a δ b+ + , and he will use the same 

strategy as Player B if x a b> + .  Since this only occurs when ( )V a V bδ≤ ≤ ( ) , [play c in 

; in , play c if opponent played c and d if opponent played d; play d in ] is 

a BPE strategy pair when 

1n = 2n = 3n =

( ) ( )V a V bδ≤ ≤ . Q.E.D.         

 

 Collusion in the first and second period are proven to be possible under certain 

conditions, and the results essentially extended backward from the two period model.  

This model included a new layer, Bayesian Updating, that requires players to update their 

beliefs about the opposing player’s type after each period.  The updating functioned in 

such a way that if the opposing player behaved as a TFT player would, no more 

information could be gathered about the player’s type at the end of the period.  However, 

if the opposing player took an action that was dissimilar to a move a TFT would make, 

the opposing player signaled rationality.  Again, this story needs to be evaluated in the 

evolutionary context.         

 

3.3 Evolutionary Model with Three Period Payoffs 

In the same manner as in the evolutionary model discussed in the previous chapter, 

maximizing (m) and TFT (t) types, drawn randomly from a large population, interact 

randomly in pairs in a large group.  The interaction takes the form of the three period 

rational choice game of section 4.2.  The expected payoff for a maximizing type is given 

by ( ) =δmb ( ) ( ) (, 1 ,m t m mδπ δ π+ − ) , and the expected payoff for a TFT type is given by 

( ) =δtb ( ) ( ) ( ), 1 ,t t t mδπ δ π+ − .  The rate of replication is given by  



 Burke 46

( ) ( ) ( )1ttr b bmδ δ δ= + − δ .  Types are in equilibrium when evolution, defined as the 

process where the frequency of types changes over time, no longer occurs.  If , 

, and the population is at a monomorphic equilibrium of all TFT types.  This is a 

stable equilibrium if, for a value of 

* 1δ =

0tr =

δ  slightly below 1, ( ) ( )t mb bδ δ> .  At , 

maximizing types are in a monomorphic equilibrium if 

* 0δ =

( ) ( )t mb bδ δ≤  so that , and 

if 

0tr ≤

( ) ( )t mb bδ δ< , the equilibrium is stable.  A dimorphic equilibrium is also possible, and 

this will occur if ( ) (t mb b )δ δ= .  The equilibrium is stable when 

( ) ( ) ( ) ( ), , , ,m t m m t t t mπ π π π− − + 0> .   

 

 PROPOSITION: Assuming players use pure strategies, 1=δ  is an unstable 

equilibrium, and 0δ =  is a stable equilibrium.  When  and maximizing types use 

[play d in ; in , play d if opponent played c and d if opponent played d; play d 

in ], maximizing and  TFT types  in an unstable equilibrium at 

.  When 

ax >2

1n = 2n =

3n =

( xbabddd 3/),,(* −+=δ ) ax <2 , no polymorphic equilibrium exists.  When 

, maximizing types use [play d in ax >2 1n = ; in 2n = , play d if opponent played c and d 

if opponent played d; play d in 3n = ], and ( )ddd ,,*δδ >  the population cycles 

indefinitely around the point where maximizing types switch from [play d in ; in 

, play d if opponent played c and d if opponent played d; play d in ] to either 

[play c in ; in , play d if opponent played c and d if opponent played d; play d 

in ]  or [play c in ; in 

1n =

2n = 3n =

1n = 2n =

3n = 1n = 2n = , play c if opponent played c and d if opponent 

played d; play d in ].  When this occurs, 3n = 0>δ  is stable, but no equilibrium exists. 
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 PROOF: Using the payoffs from the rational choice game, 

I. Maximizing types using [play d in 1n = ; in 2n = , play d if opponent played c and d if 

opponent played d; play d in 3n = ],  and TFT types are in equilibrium when their 

respective expected payoffs are equal where ( )bxa δδδ −+= 13 .  For the expected 

payoffs to be equal for some value of δ , ba +  must be less than  which is the case 

given the collusion condition of 

x3

xba 2<+  presented initially.  The equilibrium is given 

by , and it is knife-edge equilibrium because ( xbabddd 3/),,(* −+=δ )

( ) ( ) ( ) ( ), , , ,m t m m t t t mπ π π π− − + 0>  is not true.   

a. When ),,(* dddδδ < , maximizing types have a greater expected payoff, and 

the replication dynamic will push the population to an equilibrium at 0=δ .  

The equilibrium is stable because ),,(* dddδ  is unstable.   

b. When ),,(* dddδδ > , TFT types will have a greater expected payoff, and δ  

will increase until ( )V bδ >  at which point [play d in 1n = ; in , play d if 

opponent played c and d if opponent played d; play d in 

2n =

3n = ] is no longer a 

BPE and maximizing types begin using the strategy [play c in ; in 1n = 2n = , 

play c if opponent played c and d if opponent played d; play d in ].   3n =

c. For ),,(* dddδ  to be possible as a knife-edge equilibrium, [play d in ; in 

, play d if opponent played c and d if opponent played d; play d in 

1n =

2n = 3n = ],   

must be an BPE when ( )xbabddd 3/),,(* −+=δ .  Comparing  

and , 

( )xbab 3/ −+

( )V b ),,(* dddδ  is greater than ( )V b  when ax <2 , and ),,(* dddδ  is less 

than  when .  So when ( )V b ax >2 ax <2 , ( )*( , , )d d d V bδ > , and  [play d in 

; in , play d if opponent played c and d if opponent played d; play d 1n = 2n =
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in ], is not a BPE at 3n = ),,(* dddδ .  No dimorphic equilibrium exists, 

maximizing types always have a greater expected payoff than TFT types when 

using [play d in ; in 1n = 2n = , play d if opponent played c and d if opponent 

played d; play d in ], and when maximizing types use [play d in ; in 

, play d if opponent played c and d if opponent played d; play d in 

3n = 1n =

2n = 3n = ], 

the only equilibrium is a stable equilibrium at 0=δ .  When ( )*( , , )d d d V bδ < , 

a knife-edge equilibrium exists at ),,(* dddδ  as long as maximizing types use 

[play d in ; in , play d if opponent played c and d if opponent played 

d; play d in ], when [play c in 

1n = 2n =

3n = 1n = ; in 2n = , play d if opponent played c 

and d if opponent played d; play d in 3n = ] and [play c in ; in , play 

c if opponent played c and d if opponent played d; play d in ]  are also 

Bayesian perfect equilibria which occurs when 

1n = 2n =

3n =

( ) *( , , )V a d d dδ≤ .  When this 

is true, (a) and (b) explain the replication process and equilibrium selection.    

II. Maximizing types using [play c in 1n = ; in 2n = , play d if opponent played c and d if 

opponent played d; play d in 3n = ] are in equilibrium with TFT types when their 

payoffs are equal at ( )bxxxa δδδ −++=+ 12 , so that ( ) ( )xbabddc 2/,,* −+=δ , and this 

equality is possible when given the original collusion condition, xba 2<+ .  This 

equilibrium is a knife-edge as ( ) ( ) ( ) ( ), , , ,m t m m t t t mπ π π π 0− − + >  is false.   

a. When ),,(* ddcδδ < , maximizing types using ( );  given  or ;c d c d d  have a 

greater expected payoff, and δ  will decrease until maximizing types begin 

using [play d in ; in 1n = 2n = , play d if opponent played c and d if opponent 

played d; play d in ].   3n =
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b. When ),,(* ddcδδ > , TFT types have a greater expected payoff, and δ  will 

increase until maximizing types begin using [play c in 1n = ; in , play c if 

opponent played c and d if opponent played d; play d in 

2n =

3n = ]. 

c. For ),,(* ddcδ  to be possible as a knife-edge equilibrium, [play c in ; in 

, play d if opponent played c and d if opponent played d; play d in 

1n =

2n = 3n = ]  

must be an BPE when ( ) ( )xbabddc 2/,,* −+=δ .  The pure strategy [play c in 

; in , play d if opponent played c and d if opponent played d; play d 

in ] is a BPE when 

1n = 2n =

3n = ( )V bδ ≤ , and when compared, ( )ddc ,,*δ  is always 

be greater than .  Maximizing types will use [play c in ; in , 

play c if opponent played c and d if opponent played d; play d in ]  at 

, and when maximizing types do use [play c in ; in , play 

d if opponent played c and d if opponent played d; play d in ], they will 

always have a greater expected payoff than TFT types.  Using [play c in 

( )V b 1n = 2n =

3n =

( ddc ,,*δ ) 1n = 2n =

3n =

1n = ; 

in , play d if opponent played c and d if opponent played d; play d in 

]  will cause 

2n =

3n = δ  to decrease until maximizing types begin using the 

strategy [play d in ; in 1n = 2n = , play d if opponent played c and d if 

opponent played d; play d in 3n = ].   

III. Maximizing types employing [play c in 1n = ; in 2n = , play c if opponent played c and 

d if opponent played d; play d in 3n = ] will be in equilibrium with TFT types when 

.  However, these expected payoffs can never be equal, and the 

expected payoff to maximizing types will always be greater than the expected payoff to 

TFT types. 

( )bxxxa δδδ −++=+ 122
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a. At 1=δ , TFT types are in an unstable monomorphic equilibrium.  An 

invading maximizing type using [play c in 1n = ; in 2n = , play c if opponent 

played c and d if opponent played d; play d in 3n = ]  will have a greater 

expected payoff than TFT types, and the system will not return to the 

monomorphic equilibrium.   

b. When 1<δ , maximizing types have a greater expected payoff, and δ will 

decrease until maximizing types begin using the strategy [play c in ; in 

, play d if opponent played c and d if opponent played d; play d in 

1n =

2n = 3n = ]  

or [play d in ; in 1n = 2n = , play d if opponent played c and d if opponent 

played d; play d in ].  Q.E.D.  3n =

 

The results of the evolutionary analysis for the three period game differ 

significantly from the two period game.  Here, under certain circumstances collusion is 

possible in a stable environment.  However, collusion does not occur as part of a stable 

equilibrium, but rather it exists as part of a cycle between colluding and defecting.  While 

the system is not stable, it confirms the belief of rational players that TFT players can 

exist in a population with some positive probability.  While the results are subtle, they 

confirm the results of Kreps et al. for the three period case with two-sided asymmetry 

about player types.  The benefit of collusion increased between when moving to a game 

with greater periods, and this seems to predict the possibility of even greater collusion in 

games with more than three periods.   
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CHAPTER IV: CONCLUSION AND SUGGESTIONS FOR FURTHER 

RESEARCH 

Conclusion 

 The finitely repeated Prisoners’ Dilemma is an important area of development for 

game theoretic analysis because of the apparent discrepancy between experimental and 

theoretic results.  The work in this thesis explains collusion in a specific form of 

interaction, the finitely repeated PD, that has remained unexplained and assumed by 

Gauthier as negligible in his social contract theory of morals. 

In light of Kreps et al. and my own analysis, cooperation appears possible in a 

finitely repeated Prisoners’ Dilemma with a certain amount of information asymmetry.  

In both the two period and three period models, collusion is rational under certain 

conditions of δ .  However, TFT types are not stable in an evolutionary system given the 

expected payoffs from the two period PD.  In the three period model, TFT types, while 

not in equilibrium, are stable for a positive level of δ .  The situation is quite unique 

where no equilibrium is reached because rational players toggle between Nash 

equilibrium strategies.  One of these strategies involves collusion in the first period 

revealing that not only are the beliefs of rational players that TFT types exist with some 

probability but they also find it rational to collude in certain circumstances.    

 

Suggestions for Further Research 

 This paper’s analysis has shown that cooperation is possible in a 3 period repeated 

Prisoners’ Dilemma, and that the types in the population are stable for certain conditions 

in an evolutionary system.  The first step in extending this thesis would be to develop a 



 Burke 52

model where universal collude is a possible equilibrium.  In the three period model the 

rational strategy of a player cycles between defecting and colluding in the first period of 

the game.  An interesting addition would include the possibility of rational players 

cycling between different levels of collusion.  This may be possible in as early as a 4 

period model if rational players cycle between colluding in the first period and colluding 

in periods including and after the first period.   

Another interesting direction in which this paper could be developed is towards a 

generalized model for n repeated periods of the Prisoners’ Dilemma.  Between the two 

and three period models, the benefits of cooperation increase with an increase in the 

number of periods.  This suggests that cooperation will become more and more likely as 

the number of periods increases.     

 In addition to or in replacement of information asymmetry as a necessary 

condition for rational cooperation, other scenarios could be explored that allow for 

cooperation in finitely repeated Prisoner Dilemmas.  This is a very interesting topic that 

this paper has only lightly touched, and from the nexus of rational choice and 

evolutionary game theory, the model and the concept can be expanded in either direction.     
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NOTES 
 
1 Plato, The Republic (New York: Cambridge University Press, 2000), bk. 2 359c-60b. 
2 Thomas Hobbes, Leviathan (New York: Penguin Books, 1985)..  For critique of the Foole, see especially 
Hobbes, Leviathan, 205. 
3 Rousseau, The Discourses and Other Early Political Writings (New York: Cambridge University Press, 
1997), 163..  Rousseau does not explicitly state the payoffs from killing a stag and killing a rabbit, nor does 
he state the likelihood that either animal will be successfully killed given either decision the hunter 
interested in defecting makes.  If it is the case that the members of the group do not conflict in their 
interests but strictly prefer that the same decision is made by all hunters, then the stag hunt is a coordination 
problem not a Prisoners’ Dilemma. 
4 David Hume, A Treatise of Human Nature, ed. John Cottingham, Oxford Philosophical Texts (New York: 
Oxford University Press, 2000). cited in Mancur Olson, The Logic of Collective Action (Cambridge, MA: 
Harvard University Press, 1965), 33-34. 
5 Hume, A Treatise of Human Nature, bk. 3, part 2, sect. 8, 345-52. 
6 David Gauthier, Morals by Agreement (Oxford: Clarendon Press, 1986), 2. 
7 Ibid. 
8 Ibid., 4. 
9 John Maynard Smith, Evolution and the Theory of Games (New York: Cambridge University Press, 
1982).  
10David M. Kreps et al., "Rational Cooperation in the Finitely Repeated Prisoners' Dilemma," Journal of 
Economic Theory  (1982): 247-50. 
11Collusion in a finitely repeated period game with information asymmetry may also be achieved if a 
rational player imputes some positive probability that the other player simply enjoys collusion.  Modeling 
collusion in such a way is practical because it does not rely on individuals behaving according to pre-
programmed strategies, and therefore it can support collusion without relying on an evolutionary scenario.  
However, this assumes that the utility functions of certain individuals are different where colluding 
increases utility greater than the payoff for collusion in a PD.  This begs the question as to why some 
players do not get an extra payoff from defecting in response to someone else’s collusion.  The model used 
in this paper rests on the assumption that at least some individuals, at least part of the time, behave as types.  
12  is necessary because otherwise the Pareto-dominant strategy is to alternate between defect-
collude and collude-defect, and I would like to assume that consistent cooperation is always Pareto optimal.    
13 Russell W. Cooper, Coordination Games (New York: Cambridge University Press, 1999), 1-10. 
14 John C. Harsanyi and Reinhard Selten, A General Theory of Equilibrium Selection in Games 
(Cambridge: MIT Press, 1988). 
15 Hans Carlsson and Eric van Damme, "Global Games and Equilibrium Selection," Econometrica 61, no. 5 
(1993). 
16 Michihiro Kandori, George J. Mailath, and Rafael Rob, "Learning, Mutation, and Long Run Equilibria in 
Games," Econometrica 61, no. 1 (1993). 
17 To see this equilibrium definition refer to Samuel Bowles and Herbert Gintis, "How Communities 
Govern: The Structural Basis of Prosocial Norms," in Economics, Values, and Organization, ed. Avner 
Ben-Ner and Louis Putterman (New York: Cambridge University Press, 1998)..  While other equilibrium 
definitions exist, for example Smith, Evolution and the Theory of Games., the Bowles and Gintis (1998) 
definition is most consistent with the explanation for the replication of types used in this paper. 
18 This function is drawn from the derivative of the growth function with respect to δ : δddrt /

( )
 where 

( ) ( ) ( ) ( ) ( )[ ]δδδδδδδ mtttt bbbbbr −+−=−= 1
( ) ( ) ( )

 so 

( ) ( ) ( )( )/ 1 , , , ,t t mdr d b b t t t m m t m mδ δ π π π π= − − + − − − + 0/ > and since δdt

( ) ( )
dr  

the condition ( ) ( ), , , , 0m t m m t t t mπ π π π− − + >  must also be true.  
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