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Introduction

Take a porous stone and immerse it in water. Does the center of the stone
contain water? The answer to this question can be given by understanding math-
ematical percolation [5].

The percolation process is a model of an event passing through a space. The
event can be one such as a disease spreading, or such as an object being permeated
by a liquid. The space restricts this. In the pure mathematical sense of the
percolation process, we care not about the event, but its ability to span [10]. To
be able to handle this problem, we consider our space to be in the form of a
random lattice. We mostly work with the square lattice, but will mention some
others such as the triangular lattice.

There are two types of mechanics used to describe how our liquid penetrates
through our lattice. In site percolation, each vertex has a probability (independent
of the rest) of being ’open’, otherwise it is ’closed’. Our liquid is allowed to pass
to an adjacent vertex only if it is open. Bond percolation considers edges in our
lattice open or closed and events travel from one vertex to an adjacent vertex only
if the edge is open [10].

At some probability level, our liquid will succeed in reaching an infinite number
of vertices. This leads us to the idea of a critical probability (or pc), where if our
vertices/edges have a probability greater than pc of being open, then with positive
probability the liquid will reach an infinite number of vertices. On the other hand,
if the probability that a vertex or edge is open is less than our critical probability,
then surely the event will not be able to reach infinitely many vertices. There
is a covering lattice method that will convert a bond problem to site problem,
showing pbond

c ≤ psite
c . The question to what happens at the critical probability

remains unanswered for many lattices. For the ’square’ lattices with dimension
greater than 19, it has been proved that an infinite cluster does not exist pc [9].
One and two dimensions will be discussed in this thesis, and it remains unknown
what happens on the square lattices between 3 and 18 dimensions.

For rigorous calculations (not presented in this thesis), two main inequalities
are used. They are the FKG and BK inequality. The FKG tells us that if we know
that vertices u and v are connected by an open path, then it is at least as likely
that vertices y and z are connected knowing so. The BK inequality states that
under the same hypotheses, the chance that v, u, y, and z are not all connected is
at most the product of their individual probabilities [5].

In chapter 2 we consider percolation on a finite rectangular sub-lattice. After
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determining which edges or vertices are closed in our finite lattice, we ’copy’ the
outcome and periodically layer the entire plane with these copies. We call this
determinate percolation as one sub-lattice or tile determines the outcome of the
entire lattice. This is a new model which I have not been able to find in the
literature, and which exhibits apparently some interesting phenomena.

Only what seems to be the very basics of determinate percolation are presented.
We only discuss rectangles taken from the 2-dimensional square sub-lattice, and
thus in addition to what we managed to unravel, we have more questions than we
have answers. For example: when we tile the plane, instead of just translating the
tile, what happens if we also allow for reflections and/or rotations? If we expand
the size a square tile towards∞, can we show that percolation occurs with a 50/50
chance when the probability that the vertex/edge is set at pc? What happens if
we expand the tile but at side lengths without a 1:1 ratio? What happens when
we use different lattices other than the square (so long as they fit together). What
if we tile the plane with different ’determinate’ tiles (same shape or of different
shapes)?
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Chapter 1: Introduction to Percolation

Let V be a countable set and let E be a collection of subsets of V of size two.
Then G = (V,E) is a countable graph. We call v ∈ V a vertex in G. We call
e ∈ E an edge in G, e = {u, v} where u, v ∈ V , u 6= v. Vertices are also referred
to as sites and edges can also be referred to as bonds.

A subgraph A of G, denoted A ⊆ G, is a graph A = (VA, EA) where VA ⊆ V ,
and EA = {{v, v′} : v, v′ ∈ VA and {v, v} ∈ E}.
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Figure 1.1: L2 = the square lattice
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Figure 1.2: The triangular lattice. Figure 1.3: The honeycomb lattice.

In this thesis we shall be most interested in subgraphs of the particular graph
G = (V,E) such that V = Zd , the integer points in dimension d (particularly
d ≥ 2), and E = Ed := {{v, v′} : v, v′ ∈ V, |v − v′| = 1}. This graph is also
referred to as the d-dimensional lattice and often denoted by (Ld).

Two vertices v and v′ are adjacent if ∃ e ∈E such that e = {v, v′}. Two edges
are adjacent if they share one (and only one) vertex.

A path, π, of length n from v to v′ is a finite sequence of distinct vertices
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π = (v = v0, v1, ..., vn = v′) such that vi ∈ V, vi 6= vj for i 6= j, and for each
0 ≤ i < n, e = {vi, vi+1} ∈ E.

A circuit is a path plus the edge e = {vn, v0}. If the path has length n, the
circuit has length n+ 1.

A tree is a graph which contains no circuits. If ∃ a path between v and v′,
then such a path is unique.

Suppose we have subgraphs A,B of G. We say A and B are edge-disjoint if
they have no edges in common. A and B are disjoint if they have no vertices in
common.

Let us give edges the property of being either open or closed. Let Ω be a
configuration by setting every edge as either open or closed, and let ω(e) signify
the state of an edge by ω(e) = 1 if it is open and ω(e) = 0 if it is closed.
Ω = Πe∈Ed{0, 1} with elements ω = {ω(e) : e ∈ Ed} [5].

We could have alternatively defined the graph to have open/closed vertices.
If we are considering vertices being open or closed, then we are looking at site
percolation. If we are interested in whether edges are open or closed, we are
studying bond percolation. Definitions between bond and site percolation to come
will differ slightly (and as expected); in this thesis we will be most interested in
bond percolation.

Given a configuration, two distinct vertices v, v′ are joined by an open path
π = (v = v0, v1, ..., vn = v′) if ω({vi, vi+1}) = 1 for every 0 ≤ i < n. A closed path
is a path in which every edge is closed.

A vertex v is isolated if it has no adjacent vertices, that is, there are no edges
e = {v, v′} for every v′ ∈ V − {v}.

Two vertices v, v′ belong to the same cluster if there is an open path from v
to v′. For a vertex x ∈ V , the cluster of x, C(x), is the set of vertices which are
joined by open paths to x. We denote C as the cluster which includes the origin,
and |C(x)| is the cluster size. Note that isolated vertices have a cluster size of 1.
A closed cluster is likewise a set of vertices which are connected by closed paths.

2
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Figure 1.4: A configuration of L2, L2(ω)

Lets look at the graph G(ω) = (V,E(ω)) ⊆ G = (V,E), where E(ω) = {e ∈
E : e open for ω} (The only edges shown in the figure 1.4 are open edges). Clusters
in G(ω) are nonempty sets of vertices connected by a path in G(ω), and form an
equivalence relation on V . It is easy to see that every connected component of
G(ω) is a cluster and the set of all clusters partition V .

Let a, b ∈ Zd, n ∈ Z+. A box is a subset Zd denoted by

B(a, b) = {v ∈ Zd : ai < vi < bi ∀i}.
We write B(n) for boxes centered at the origin instead of B(−n, n).

Given subsets of vertices A,B,D ⊆ G, we write A ↔ B if ∃ an open path
joining some vertex in A to some vertex in B, and A = B if there does not.
A↔ B off D if A↔B exists using no vertex in D.

Let A be a subgraph of G. The perimeter of A is the set of vertices not
belonging to A but adjacent to at least one vertex in A. This is sometimes
referred to as outer boundary, denoted ∂+A.

Let A be a subgraph of G. The surface of A, denoted ∂A is the set of vertices
in A which are adjacent to at least one vertex in the perimeter of A. That is
∂A = {v ∈ V : v ∈ A, {v, v′} ∈ E, and v′ 6∈ A}. The surface can also be referred
to as inner boundary, or ∂−A.

To determine a configuration of Ω, we generally use the following procedure:
Let p be a fixed number such that 0 ≤ p ≤ 1. We say an edge is open (ω(e) = 1)
with probability p, otherwise it is closed (ω(e) = 0), independent of other vertices.
The configuration given in figure 1.4 was randomly generated with p = 0.3.

Let F be the product σ-algebra on Ω and let Pp = Πe∈Ed(1 − p, p) be the
product probability measure on (Ω,F) giving each edge a probability p of being
open and 1− p of being closed independently of all other edges.

3



The percolation probability, denoted by θ(p), is the probability that the origin
belongs to an infinite cluster. That is,

θ(p) = Pp({ω ∈ Ω : |C(ω)| = ∞})
If we wish to use a point other than the origin, we write

θ(p) = Pp({ω ∈ Ω : |C(x)(ω)| = ∞}) for any fixed x ∈ Zd.

It is easy to see that θ(p) is a non-decreasing function of p.

The critical probability pc is defined by the setting

pc = sup{p : θ(p) = 0} = inf{p : θ(p) > 0}

Thus, for p < pc we have θ(p) = 0 and for p > pc we have θ(p) > 0. If we
need to distinguish between the critical probability of bond or site percolation, we
write pbond

c or psite
c .

An embedding is the placement of a graph upon a surface such that connectivity
is preserved. In our case, we are using the infinite plane as our surface.

Given a graph G and an embedding onto a surface S, a face is a connected
component of S −G. In L2, our faces are the squares lying between its edges.

The dual of (planar) G is the graph Gd = (Vd, Ed) such that there exists a
unique v ∈ Vd for every face in G, including the infinite one if it exists. The edge
set Ed = {v, v′} such that v, v′ ∈ Vd and the corresponding faces of v and v′ share
a boundary edge in G.

s s s s s s
s s s s s s
s s s s s s
s s s s s s
s s s s s s

c c c c c
c c c c c
c c c c c
c c c c c

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p
p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p
p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p
p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

pppppp
pppppp
pppppp
pppppp
pppppp

pppppp
pppppp
pppppp
pppppp
pppppp

pppppp
pppppp
pppppp
pppppp
pppppp

pppppp
pppppp
pppppp
pppppp
pppppp

pppppp
pppppp
pppppp
pppppp
pppppp

Figure 1.5: L2 and it dual.

The dual of L2 is itself shifted right and up both by half a unit. More formally
L2

d = (Vd, Ed) where Vd = {(x+1/2, y+1/2)∀x, y ∈ Z} and Ed = {{v, v′} : v, v′ ∈
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Vd, |v − v′| = 1}. Figure 1.5 is the lattice L2 and it’s dual. The vertices of the
dual are drawn as open circles, and edges are dotted lines.

For the graph G = (V,E) let us configure the dual Gd = (Vd, Ed) as such:
e ∈ E is open if and only if ed is open, where ed ∈ Ed is the edge which crosses
e ∈ E.

rrr rr r
r r

rrrr r r
r r rr

rr rr
HH��

��HH

HH ��� H

�H �H

H�

0
v

Figure 1.6: A tree graph
(known as a Cayley tree or Bethe lattice).

Lemma 1.7: If G = (V,E) is an infinite tree, then pbond
c = psite

c .

Proof : Choose a point as the origin. Short of the the probability that the
origin is closed or open in site percolation, for any v ∈ V there is isomorphism
between the connection between the (unique) path from 0 to v using either open
sites or open bonds. In figure 1.6, 0 and v belong to the same cluster if either
the three bonds or sites between them are open. It does not matter whether the
vertex, or the edge immediately before it is determined open or closed. 2

Theorem 1.8: For the one-dimensional lattice, percolation (bond or site)
occurs only when p = 1.

Proof : When p = 1 the entire chain is open. Lets assume 0 ≤ p < 1. At
any particular vertex v, the probability that there exists an open path to a vertex
right (or left) that is of L units away is pL. Since p < 1 as L approaches infinity
we have a geometric series.

limL→∞(pL) = 0

So the chance of an infinite cluster has probability zero if p 6= 1 [11]. 2

Theorem 1.9: If N is an nondecreasing random variable on (Ω,F), then
Ep1(N) ≤ Ep2(N) whenever p1 ≤ p2, so long as the mean values exist. If A is an
increasing event in F, then Pp1(A) ≤ Pp2(A) whenever p1 ≤ p2.

5



This theorem seems intuitively clear: with an increasing variable, N ,or event,
A, if you increase the probability of p, we should not expect a lower occurrences
of N or less likely chance of A. Grimmett gives a short proof for Theorem 1.9 on
page 33 [5]

Theorem (probability) 1.10- Kolmogorov’s zero-or-one law [7]: If
F ⊆ Ω, F ∈ F is shift invariant, then either Pp(F ) = 0, or Pp(F ) = 1.

Theorem 1.11: The probability ψ(p) that there exists an infinite open cluster
satisfies: ψ(p) = 0, if θ(p) = 0 ψ(p) = 1, if θ(p) > 0

Proof : By the zero-one law, ψ can only take the values 0 or 1, since the event
F that there exists an infinite open cluster is shift invariant. So if θ(p) > 0, then
ψ(p) ≥ Pp(|C| = ∞) > 0. So θ(p) > 0 ⇒ ψ(p) = 1.

Burton and Keane [2] also prove that if there exists an infinite cluster, then it
is unique.

Theorem 1.12: pc(d+ 1) < pc(d)

Proof : It can be seen that Pc(d+ 1) ≤ Pc(d) since Pc(d) can be embedded in
Pc(d+1). Thus, if percolation occurs in a smaller dimension, then it will certainly
occur in a larger dimension. Strict inequality is quite hard to show, and thus it is
not presented.

Theorem 1.13: 0 < pc < 1 for Ld, d ≥ 2.

Proof : Let’s start with d = 2 and show that 0 < pc. The chance that a vertex
is connected to another vertex with path length n can be no more than 4p(3p)n−1.
So for it to belong to an infinite cluster, we let n→∞. We can see that for any
0 ≤ p < 1/3 the probability goes to 0. For d > 2, we can replace the ’4’ with 2d
and the ’3’ with 2d− 1.

To show pc < 1, assume p is close to one. In the first quadrant, divide up the
vertices into 2 × 2 squares and their edges to the right and above each vertex of
these squares. Let us call the square vertex set ’open’ if 3 out of 4 vertices have
its right and upper edges open (which happens with p < 1). An ’open’ square
vertex set is connected to both the square vertex sets to the right and above.

Next divide up our square vertex sets into 2×2 squares (let’s call these blocks).
If 3 of the 4 square vertex sets are ’open’, then there is an edge connection between
the block and the blocks to the right and above. We can keep repeating this

6



pattern, each step needing only 3 of the 4 units to continue a connection. If this
happens, then there is an infinite path from the origin.

Let f(p) be the chance that at least 3 of 4 vertices are open. Then

f(p) = p4 + 4p3(1− p) = 4p3 − 3p4

f(p)− p = 4p3 − 3p4 − p and f(1)− (1) = 0
d
dp

(f(p)− p) = 12p2 − 12p3 − 1, which approaches −1 as p approaches 1.

Since f(1)− (1) = 0, and d
dp

(f(p)− p) < 0, then f(p) > p or f(p)− p > 0 for
p close to one.

So then for p strictly less than one, we have p < f(p) < f(f(p)) < .... So
dn

dpn (f(p) − p) approaches 1 as n → ∞ for p only ’close to 1’. So surely we have

an infinite cluster for some p < 1. Thus pc(L2) < 1.

Using Theorem 1.12 to quickly see that for d > 2, pc(Ld) < 1. 2

Theorem 1.14: For any two dimensional lattice L, pc(L) + pc(Ld) = 1

The statement is equivalent to p > pc(L) if and only if 1− p < pc(Ld). Proof
of either statement is quite complicated, so instead we give an intuitive argument.
If p > pc, then there is likely an infinite cluster which is unique (proof not given).
This cluster extends throughout our lattice, and thus any closed clusters are guar-
anteed to be finite. The probability of the closed-edge dual (having probability
1− p) would not breach the critical probability. See [10] and [6] for proof.

Corollary 1.15: The critical probability of L2 = 1/2.

Proof : This comes directly from theorem 1.13 and noticing that the dual of
L2 is itself (shifted). 2

What happens when p = 1/2? In L2, suppose at pc we get an infinite cluster.
The cluster, being unique, spans throughout the entire lattice. This would mean
that clusters of the dual must be finite. The dual (also L2) at the critical proba-
bility then does not have an infinite cluster and contradicts our assumption. Thus
it must be the case that θ(1

2
) = 0 in L2.

Theorem 1.16: pc(triangle lattice) < pc(L2) < pc(hexagonal lattice).

Proof : If we rearrange the triangle lattice (Figure 1.16), we can see that the
square lattice is a subset of the triangular lattice (missing the diagonal edges). So
obviously pc(triangle lattice) ≤ pc(L2).

7
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Figure 1.17: rearrangement of
the triangle lattice.

Figure 1.18: The triangle lattice
and its dual (the honeycomb).

Strict inequality is harder to show. To do this, we look at the dual of the
triangular lattice, the honeycomb (hexagonal) lattice, along with the theorem
pc(L) + pc(Ld) = 1.

Choose the vertex subset V2 such that for some v′ ∈ G = (hex), V2 = {v : v =
v′ or the length of the path from v to v′ is even}. The triangle lattice ’appears’
in the hexagonal lattice using the vertices of V2. Every two adjacent edges in the
honeycomb corresponds to an edge in the triangle lattice (figure 1.18).
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Figure 1.19: The relation between honeycomb and triangle latices.

Of course if the pair of corresponding edges did not overlap with another edge,
our problem would be easy. However that is not the case, so we analyze one of
our honeycomb ’triangles’ by looking at the ’edge’ probability (see figure 1.19).
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Figure 1.20: A view of one triangle in the honeycomb.

The dotted edges triangle will be open only when the the two edges sharing
a vertex and the center are open in the honeycomb. For example, {a, b} is open
if and only if {a, d} and {b, d} are open. Furthermore, we know that pc(triangle
lattice) ≤ pc(L2 = 1/2), so for q = 1− p, p ≤ q.

3 bonds

2 bonds

1 bond

0 bonds

triangle
lattice

triangle lattice
in the honeycomb

p3 p3

3p2q 0

3pq2 3p2q

q3 3pq2 + q3 = q2(3p+ q)

=

>

>

<

We can clearly see that the honeycomb lattice is strictly going to produce less
open triangle bonds than the triangle lattice. Thus the critical probability of the
honeycomb lattice is (strictly) higher than the triangular lattice.

Using the inequality above, pc(triangle lattice) + pc(triangle lattice dual) =
pc(triangle lattice) + pc(honeycomb lattice) = 1, and the inequality pc(triangle
lattice) ≤ pc(L2, we get our desired outcome of

pc(triangle lattice) < pc(L2) < pc(hexagonal lattice)2.
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Chapter 2: Introduction to Determinate Percolation

Let G be a subset of the graph L2, and n1, n2 ∈ Z+ such that the vertices of G,
G(V ), is a box of vertices with n1 columns and n2 rows. Let the lower left vertex
be the origin so that G(V ) = B(0, (n1 − 1, n2 − 1)). Let the edge set, G(E), of G
be

E = {{(x, a), (x+ 1, a)} for all 0 ≤ x ≤ n1 − 1, 0 ≤ a ≤ n2, a, x ∈ Z}⋃
{{(b, y), (b, y + 1)} for all 0 ≤ y ≤ n2 − 1, 0 ≤ b ≤ n1, b, y ∈ Z}

Note that G does not contain all the vertices of all it’s edges. The top and right
sides of the box have hanging edges, that is, edges that only have one vertex. A
graph with hanging edge components is called a graph fragment. A box with a
corner on the origin, on the positive axes, with this particular addition of hanging
edges we will denote as a box fragment, Bfrag, or Bfrag(x) where x is the vertex
furthest from the origin. Note that Bfrag still includes the hanging edges, so in
Bfrag(0, 0), n1 = n2 = 1.

s s s s s s s s s s s
s s s s s s s s s s s
s s s s s s s s s s s
s s s s s s s s s s s
s s s s s s s s s s s
s s s s s s s s s s s
s s s s s s s s s s s
s s s s s s s s s s s
s s s s s s s s s s s

Figure 2.1

The graph fragment in figure 2.1 is a subset of the square lattice (n1 = 11, n2 =
9). We can extend the box, edges, and hanging edges in any dimension, but for
this thesis we will mostly be analyzing the two dimensional box fragment.
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Let the edges in Bfrag be open or closed as normal with probability p and 1−p.
This configuration of Bfrag is called the determinate graph fragment, denoted by
Gdet. We write Gd

det when we need to specify which dimension(s) of L we are
considering.

t t t t t t
t t t t t t
t t t t t t
t t t t t t
t t t t t t

Figure 2.2

Figure 2.2 is the graph Gdet(ω), which removes all edges that are closed. In
the graph, edges were open with probability p = 1/2.

Now let us create isomorphic copies, called tiles, of the determinate graph
fragment and translate them so that the origin of the determinate graph lies on
a vertex in the form of (kn1, jn2), ∀k, j ∈ Z. Therefore, for every v ∈ Gdet,
v + (kn1, jn2) is a copy of that vertex. Likewise, if {v, v′} is an edge in Gdet,
then {v + (kn1, jn2), v

′ + (kn1, jn2)} is also an edge in L2. The configuration
of Gdet is also copied. So if {v, v′} is open (closed), then all edges in the form
of {v + (kn1, jn2), v

′ + (kn1, jn2)} are open (closed). The process of covering a
infinite space with a set of tiles will be referred to as tiling. Lets call Gtile the
tiling of L2 by Gdet. Figure 2.3 is a tiling of L2 using the Gdet in Figure 2.2.
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Figure 2.3

Vertices in the form v + (kn1, jn2) ∀k, j ∈ Z are similar vertices. Edges in
the form of e = {v + (kn1, jn2), v

′ + (kn1, jn2)} ∀k, j ∈ Z are similar edges.
And likely, similar paths are paths in the form of P1 = e1, e2, ..., en and P2 =
(e1, e2, ..., en) + (kn1, jn2). Two clusters are similar clusters if all vertices of one
cluster are similar vertices of the other.

For any tile T , an adjacent tile, U , is a tile that connects, or is connected to,
T by one or more hanging edges.

Tile Distance is the shortest number of tiles crossed by a shortest path from
one vertex to another. To determine tile distance between two vertices, v0 and
v1, find their vertices, w0, w1 similar to the origin, located on the same tile. w0

and w1 should be of the form (k0n1, j0n2), and (k1n1, j1n2). Their tile distance is
|k1 − k0|+ |j1 − j0|.

So when does percolation occur? We know it occurs when for some vertex v ∈
Ld there exists an infinite cluster. Due to the repeating pattern, Gdet determines
whether or not the lattice, Gtile, has an infinite cluster, therefore, we shall call
this type of percolation determinate percolation. There are numerous properties
which are unique to determinate percolation, for example, if v ∈ Gtile is in an
infinite cluster, then so is the similar vertex in Gdet.
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Lemma 2.4: Deterministic percolation occurs if and only if for some v ∈ Gdet,
there exists a non-zero open path from v to a similar vertex (v1 = v + (kn1, jn2)
for some k, j ∈ Z, one of which is not zero). Furthermore, if there is such a k, j,
then there must be a k, j satisfying −n2 ≤ k ≤ n2, and −n1 ≤ j ≤ n1.

Proof : Part 1: ⇐
Suppose that deterministic percolation occurs. Then in a tile (lets say Gdet),
there exists a vertex v containing an infinite path. Since each tile has only a finite
number of vertices, ∀c ∈ Z, ∃ an open path from v to w where w is c tiles away.
(If the path length is ≥ cn1n2, then there are not enough vertices for the path to
be contained in fewer than c tiles.) Since a hanging edge is used to connect two
tiles together, we just need to make c > n1 + n2 so that a similar hanging edge
must have been crossed by the path more than once. Thus there is an non-zero
open path between similar vertices.

⇒
Since k, j are not both zero, the path is non-trivial. Even more so, the length of
the path must be ≥ kn1 + jn2, since it is kn1 horizontal units away, and likewise
jn2 vertical units away. If there is a path from v to v1, by repetition of Gtile

given Gdet, there exists a path from v1 to v2 = v1 + (kn1, jn2) = v + (2kn1, 2jn2).
Since paths are transitive, there exists a path from v to v2, which has length
≥ 2(kn1 + jn2). Thus we can keep repeating the process, so that for any c ∈ Z+

there exists a path from v to vc with length ≥ c(kn1 + jn2). Thus there exists a
path of infinite length.

Part 2:
There are only n1 non-similar hanging edges a path can contain to move vertically
to a new tile. Thus j is restricted by n1 by |j| ≤ n1. By a similar argument,
|k| ≤ n2. 2

Lemma 2.5: Let Cdet be a cluster in Gtile. For any finite n1, n2, ..., nd > 0, if
0 < p < 1 then 0 < Pp(|Cdet| = ∞) < 1.

Proof: Since a sequence of horizontal or vertical open paths across an en-
tire row or column in Gdet would result in an infinite cluster, there is at least a
pmin(n1,n2,...,nd) chance that an open path exists between 2 (unique) similar vertices.
So for p > 0, pmin(n1,n2,...,nd) > 0.

Likewise, if all hanging edges ofGdet are closed, then there can be no connection
from one tile to another. Since there are only finitely many hanging edges, for
p < 1, Pp(|Cdet| <∞) > 0. 2

For very small values of nd, we can calculate for which values of p, there will be
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a 50/50 chance of being an infinite cluster in Gtile, that is Pp(|Cdet| = ∞) = 1/2.
We do this by looking at all the possible configurations of Bfrag and summing the
probabilities of the Gdet configurations that would (or would not) create an infinite
cluster, setting the probability to 1/2, then solving the equation and taking the
solution lying between 0 and 1.

For example, for the case n1 = n2 = 1, if any edge is open then there is an
infinite cluster. So we set the probability that both edges are closed, (1 − p)2,
equal to 1/2 and taking the unique root between 0 and 1. Doing this we get our
solution of 1 −

√
2/2 ≈ .293. Below are more calculations which are left for the

reader to verify for other values of n1 and n2 for when Pp(|Cdet| = ∞) = 1/2.
Note that p for n1, n2 = p for n2, n1. There are 22n1n2 (or 22n1n2...nd)configurations
of a graph, so for any remotely large n1 and n2 (up to nd for larger dimensions),
the actual calculation seems impossible; the 2x3 graph had 4096 configurations!
(and no, I didn’t draw them all out.)

n1 n2 p

1 1 1−
√

2/2 ≈ .293
1 2 ≈ .246
1 3 ≈ .204
2 2 ≈ .386
2 3 ≈ .388

A computer simulation [1] was written specifically for finding this ’critical
probability’ for larger lattices. The program assigns a random number between 0
and 1 to each edge, and finds the least value path which causes an infinite cluster
and reports that number. After taking a large number of samples, it calculates the
median and mean. Below are estimates given by the computer program (nx = 0
if the dimension d < x).
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n1 n2 n3 n4 p
2 2 0 0 .3861
2 3 0 0 .3854
2 4 0 0 .3641
2 20 0 0 .1083
2 100 0 0 .08253
5 5 0 0 .453
5 10 0 0 .4386
10 10 0 0 .4724
25 25 0 0 .4861
50 50 0 0 .4913
100 100 0 0 .4975
2 2 2 0 .2213
5 5 5 0 .2483
10 10 10 0 .2491
50 50 50 0 .2499
2 2 2 2 .1381
5 5 5 5 .1624
10 10 10 10 .1631

Conjecture 2.6: Let x = (n, n, ..., n) for n ∈ N. As n approaches infinity,
Pp(|Cdet| = ∞) = 1/2 when p = pc.

It appears to be the case for d = 2 where pc = 1/2 and d = 3 where pc ≈ .25[5].
As Gdet gets large, our tiling has less to do with its repeating nature and models
more closely to that of the lattice. If this holds true for higher dimensions, then
it seems we may have a way to generate good estimates for Ld by taking an nd

box and running the program for large values of n.

Corollary 2.7: Given Ld and Bfrag(x) for some x ∈ Zd, If 0 < p < pc, then
Pp(|C| = ∞)(Ld) < Pp(|C| = ∞)(Gtile). For pc < p < 1, Pp(|C| = ∞)(Gtile) <
Pp(|C| = ∞)(Ld).

Proof: This comes trivially from the previous lemma and by using the theorem
ψ(p) = 0 if θ(p) = 0, and ψ(p) = 1 if θ(p) > 0. 2

Let the cluster order be the number of infinite clusters in Gtile given Gdet. Let
||C| = ∞| denote the cluster order. We may use ||Cn1,...,nd

| = ∞| to denote the
cluster order for Gd

det with box of size n1 − 1× n2 − 1× ...× nd − 1.

Lemma 2.8: Given any G2
det, ||C| = ∞| = 0, 1, or ∞.
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Proof : By Lemma 2.4, if there does not exist an open path to a similar vertex
then the cluster order is zero. Likewise, if all edges are open then Gtile = L2 and
the cluster order is one. Lastly if all horizontal lines are open and all vertical lines
are closed in Gdet, Gtile is a graph of infinite horizontal lines. Clearly all three
cluster orders exist.

To get another finite sized cluster order, we need first establish one infinite
cluster inGtile. However, in the two-dimensional plane, by creating our first unique
infinite cluster, the remaining spaces remaining are finite. Thus it is impossible
to create another unique infinite cluster (see figure 2.9 as an example). 2

r r r r r r r r r r r rr r r r r r r r r r r rr r r r r r r r r r r rr r r r r r r r r r r rr r r r r r r r r r r rr r r r r r r r r r r rr r r r r r r r r r r rr r r r r r r r r r r rr r r r r r r r r r r rr r r r r r r r r r r r

Figure 2.9

Lemma 2.10: Take Gdet and project it onto the torus. There exists an open
non-trivial loop if and only if there is an infinite cluster in Gtile.

Proof: ⇒
Since on all sides of the tile we are connecting ourselves to another isomorphic tile,
lets instead connect ourselves back on the other side of the tile. We can see that
the top and bottom vertices with the same x coordinate, say (kx, j(n2)− 1) and
(kx, (j − 1)n2) for some k, j ∈ Z, are connected to another tile by similar edges,
and thus when projected on the torus connected by the same edge. Likewise the
left and right edges are also connected in a similar manner.

⇐
By the Lemma 2.4, an infinite cluster exists if and only if there is an open path
between two (distinct) similar vertices. This path on the torus would create our
non-trivial loop. The loop would be in the form of Z × Y where Z is the number
of horizontal tiles and Y is the number vertical tiles the path between the similar
vertices in Gtile would be. 2

The dual of Bfrag, Bfrag−dual is the vertex set of Bfrag shifted (1/2, 1/2, ..., 1/2)
along with the nearest neighbor edges plus hanging edges which cross the planes
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determined by the axes. B2
frag−dual is shown in figure 2.11.
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Figure 2.11

Corollary 2.12: Take G2
det projected onto the torus. If there are no open

loops then ||C| = ∞| = 0, if there is an open loop in Gdet and no closed loops in
Gdet−dual then ||C| = ∞| = 1, and if there is an open loop in Gdet and a closed
loop in Gdet−dual then ||C| = ∞| = ∞.

Proof : It takes a moment’s thought to see that by the Lemma 2.10, if there
are no closed loops in the dual, then all the closed clusters in the dual are finite
and thus there is one open cluster that spans throughout the lattice. If both the
open and closed cluster exist, then each open infinite cluster is neighbored by a
closed infinite cluster in the dual on each side, and vice versa. 2
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Figure 2.13 Figure 2.14

Figure 2.13 is a configuration for n1 = n2 = 5 and the closed edges of its dual.
Figure 2.14 shows the open loop in Gdet and the closed loop in Gdet−dual. Figure
2.15 shows the tiling of Gdet along with the closed loop in the dual that separate
the infinite clusters in Gtile.
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Figure 2.15

Let Pp(||C| = ∞| = n) be the probability that ||C| = ∞| = n. We could also
use inequalities such as Pp(0 < ||C| = ∞| < ∞), which asks for the probability
that there will be any finite number of infinite clusters, but at least 1.

We can create a few obvious equalities about cluster orders, such as:

Pp(0 ≤ ||C| = ∞| ≤ ∞) = Pp(||C| = ∞| = ∞) + Σ∞n=0Pp(||C| = ∞| = n) = 1
Pp=1(||Cn1, ..., nd| = ∞| = 1) = 1
Pp=0(||Cn1, ..., nd| = ∞| = 0) = 1

Lemma 2.16: The cluster order created by a configuration of Bfrag(x)
d for

d > 2 can be any non-negative finite number, f , or ∞.

We have seen cases in which the cluster order is 0, 1 or ∞. For any natural
number n, there is a configuration in which we can create a Gtile with n infinite
clusters: In Bfrag(x) where x = nd for d > 2 let the open edge set be:

{(y, 0, 0, ..., 0), (y + 1, 0, 0, ..., 0)}
{(0, y, 0, ..., 0), (0, y + 1, 0, ..., 0)}qqq
{(0, 0, ..., 0, y), (0, 0, ..., 0, y + 1)}

{(y, 1, 1, ..., 1), (y + 1, 1, 1, ..., 1)}
{(1, y, 1, ..., 1), (1, y + 1, 1, ..., 1)}qqq
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{(1, 1, ..., 1, y), (1, 1, ..., 1, y + 1)}

sss
{(y, n, n, ..., n), (y + 1, n, n, ..., n)}
{(n, y, n, ..., 1), (n, y + 1, n, ..., n)}qqq
{(n, n, ..., n, y), (n, n, ..., n, y + 1)}

∀y ∈ Z such that 0 ≤ y < n.

This graph creates n unique interlocking (infinite) lattices. So ∀n ∈ N, we can
create a Gtile with ||C| = ∞| = n. An example for d = 3n = 2 is drawn in figure
2.17. 2
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Figure 2.17: The solid lines are open edges belonging to one infinite
cluster, the dashed lines are open edges belonging to the other

infinite cluster, and the dotted lines are closed edges.

Conjecture 2.18: If the number of infinite clusters is a finite number, f , then
0 ≤ f ≤ min{n1, n2, ..., nd}.

The conjecture states that the setup above (or a similar one) is the most
efficient way to place n unique infinite clusters in a lattice. If we shrink the above
box size by one in any dimension, then my estimate is that we will only be able
to create a Gdet with a cluster order of n− 1.
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Lemma 2.19: Take G2
det and project it onto the torus. If there is a point

v ∈ Gdet, such that there are two non-trivial, simple loops at v in the form of Z×Y
and X ×W such that (Z, Y ) and (X,W ) are relatively prime, Z, Y,X,W ∈ Z,
and Z×Y 6= X ×W , then there there is only one infinite cluster; otherwise there
are an infinite number of them.

Proof : Lets start with supposing that for every point, there is at most one
loop (or set of loops with the same homotopy class). Then a vertex v with a Z×Y
loop is connected to it’s similar vertices in the form of v+ a(Z · n1, Y · n2)∀a ∈ Z.
Since there are no other loops, it cannot however connect to any other similar
vertices, and thus the cluster order in Gtile will be ∞.

Suppose now that v has two (non homotopic) such simple loops. v is now
connected to a similar vertex not in the form of v+a(Z ·n1, Y ·n2). Therefore the
infinite cluster containing v is now connected to it’s neighboring infinite similar
cluster, and thus all infinite clusters are now connected. 2

Conjecture 2.20: Given Bfrag(x) there exists a pd where for all p < pd,
Pp(||C| = ∞| = ∞) > Pp(||C| = ∞| = n) for some n ∈ Z+, and for all p > pd,
Pp(||C| = ∞| = n) > Pp(||C| = ∞| = ∞) for some n ∈ Z+.

It takes a moments thought to realize that for lower values of p, if there are any
infinite clusters, then there would be an infinite amount, since it is likely there will
only be one similar path between two similar vertices. For large p, there are only
going to be a few edges missing, so it is very likely that Gtile will be connected as
one graph. The hypothesis is that there is a critical deterministic probability, pd,
that divides the finite cluster orders from an infinite cluster order. It should be
at least the case for two dimensions, where there are only 3 cases of cluster order.
It might not exist for higher dimensions, since it is possible to have cluster order
one, then by opening more edges switch the cluster order back to infinite.

20



References

[1] Beebe, Travis S. April 14, 2007. Computer program source code. ”Determi-
nate Percolation Simulator.” Lattice.h, main.cpp.

[2] Burton, Robert; Keane, Michael. Density and uniqueness in Percolation,
Comm. Math. Phys. 121, no. 3, 501–505 (1989).

[3] Gandolfi, A.; Keane, M.; Newman, C. M. Uniqueness of the infinite compo-
nent in a random graph with applications to percolation and spin glasses.
Probability Theory Related Fields 92, no. 4, 511–527 (1992).

[4] Gandolfi, A.; Keane, M.; Russo, L. On the uniqueness of the infinite occupied
cluster in dependent two-dimensional site percolation. Annals of Probability
16, no. 3, 1147–1157 (1988).

[5] Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
321. Springer-Verlag, Berlin, 1999.

[6] Kesten, Harry. The critical probability of bond percolation on the square
lattice equals 1/2. Comm. Math. Phys. 74, no. 1, 41–59 (1980).

[7] Kolmogorov, A. N. Foundations of the theory of probability. Translation
edited by Nathan Morrison, with an added bibliography by A. T. Bharucha-
Reid. Chelsea Publishing Co., New York, 1956.

[8] Seymour, P.D., Welsh, D.J.A. Percolation probabilities on the square lattice.
Ann. Discrete Math. 3, 227–245 (1978).

[9] G. Slade. Probabilistic Models of Critical Phenomena. This is an essay in-
tended for a general mathematical audience, from The Princeton Companion
to Mathematics, edited by Timothy Gowers. Scheduled for publication in
2007. Reprinted by permission of Princeton University Press. Posted Novem-
ber 22, 2004.

[10] Smythe, R. T.; Wierman, John C. First-passage percolation on the square
lattice. Lecture Notes in Mathematics, 671. Springer, Berlin, 1978.

[11] Stauffer, Dietrich. Introduction to percolation theory. Taylor & Francis, Ltd.,
London, 1985.

21



Appendix I

main.cpp:

/*****************************************************************************

Determinate Percolation Simulator Created by Travis S. Beebe
tbeebe(AT)alumni.unh.edu Updated April 14, 2007

The above email address can be used if you have any questions
regarding this code or the program it represents. I will try to
respond in a timely manner, but this is not guaranteed!

This program is freeware. This source can be used or modified freely
for non-commercial purpose, as long as proper credit is given. Other
use requires permission from the creator.

*****************************************************************************/
// This program was originally created for David Darling, to be used for
// simulation, in his thesis on Deterministic Percolation.
//
// This program accept input from the user to genereate a lattice of vectors
// and edges. Dimensions data is accepted by the user. After user input,
// several samples of lattices are generated, with pseudo-random values
// assigned to each edge. For each sample, a bond percolation point p is found
// where the lattice contains an infinite path for each edge value >= p. Sample
// results are averaged to predict a critical probability for the deterministic
// percolation of lattices witl the given dimensions.
//
// Results are saved to percOut-stat.txt. Details for generated lattices can
// optionally be saved to percOutput*.txt. Output contains enough information to
// describe the complete lattice: the p-value found and number of dimensions,
// and descriptions of each vertex and edge. Vertices are listed by arbitrary id
// and the edges they connect to. Each edge is identified as a pair of the
// vertices it connects, along with its p-value and some flags, "b" identifies
// a border edge, "-" is an enabled edge for the p found, and "#" is an edge in
// the path found. Optionally, a picture of the lattice tile follows (only for
// two-dimensional lattices).
//
// The program has a hard-coded soft cap of 500000 unique vertices (parameters
// that would generate more vertices are not accepted).

// not optimized for multi-processor systems

#include <cstdlib> #include <iostream> #include <fstream> #include
<ctime> #include <cmath>

#include "Lattice.h"

using namespace std;
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// maximum vertex limit for lattice tile - can be changed at programmer’s
// discretion
const int VERTICES_MAX = 500000 ;

void saveToFile( Lattice * l, int p, int x ) {
ofstream out ;
char filename[32] = "percOut " ;
char i[6] ;
itoa ( x, i, 10 );
strcat( filename, i ) ;
strcat( filename, ".txt" ) ;
out.open( filename, ios_base::binary) ;
if(out){

out << *l << "\r\n" ;
if ( p != 0 )
l -> print2dPath( out ) ;
out.close() ;

}else{
out.close() ;
cout << "*" << endl ;

}
}

int main(int argc, char *argv[])
// contains all interactive code, fires off generator and simulator found
// in Latttice class
{

// initialize pseudo-random number generator
srand(time(0));

cout << "*** Percolation Simulation ***" << endl ;
cout << "Created by Travis Beebe" << endl ;
cout << endl << endl ;

cout << " Enter number of samples (>0): " ;
unsigned long int s ;
cin >> s ;
// valid range
if ( s < 0 ) s = 1 ;

cout << " Enter number of dimensions for lattice (>1): d = " ;
short int d ;
cin >> d ;
// valid range
if ( d > 255 ) d = 255 ;
if ( d < 2 ) d = 2 ;

short int p = 0 ;
cout << " Output samples to text files (y/n)? " ;
char save ;
cin >> save ;
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if ( save != ’y’ && save != ’Y’ ) save = ’n’ ;
else
{

if ( d == 2 )
{

cout << " Enter size of picture output (1-10, 0 for no pic): " ;
cin >> p ;
if ( p > 10 ) p = 10 ;
if ( p < 1 && p > 0 ) p = 1 ;
if ( p < 0 ) p = 0 ;

}
}
cout << endl ;

long vertices = 1 ;
int * dim = new int[d] ;
for(short int n=0;n<d;n++)
{

cout << " Enter size of dimension " << n+1 << " (>1): " ;
cin >> dim[n] ;
// valid range
if ( dim[n] > 999999 ) dim[n] = 999999 ;
if ( dim[n] < 2 ) dim[n] = 2 ;
vertices *= dim[n] ;
cin.ignore() ;

}

double pSum = 0.0000 ;
double * samp = new double[s] ;
for(int i=0; i<s; i++) samp[i] = 2.0000 ;
if ( vertices > VERTICES_MAX )
{

cout << endl << "*** Warning: Too many vertices (" << vertices ;
cout << "), aborting..." << endl ;

} else {

Lattice * l ;
cout << endl << "Sampling lattices " ;
for(int x=0; x<s; x++)
{

if ( s > 100 && x % ( s / 10 ) == 0 ) cout << x / ( s / 10 ) ;
else cout << "." ;
cout.flush() ;
// generate lattice
l = new Lattice( int(d), dim, p ) ;
// find p-value
double pVal = l -> findPath() ;
// store sum of p-values to use for average calc
pSum += pVal ;
// insertion sort p-value to use for median calc
int i = x ;
while( i > 0 && samp[i-1] >= pVal )
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{
samp[i] = samp[i-1] ;
i-- ;

}
samp[i] = pVal ;
// save lattice to file?
if ( save != ’n’ ) saveToFile( l, p, x ) ;
delete l ;

}
cout << "done." << endl ;

}
cout << endl ;
cout.precision( 4 ) ;
double median = samp[s/2] ;
if ( s % 2 == 0 ) median = ( samp[s/2] + samp[s/2-1] ) / 2 ;
cout << endl << "##### AVERAGE p = " << pSum / s << endl ;
cout << "##### MEDIAN p = " << median << endl << endl ;

// save stats to file
ofstream out ;
out.open( "percOut-stat.txt", ios_base::binary) ;
if(out){

out << "##### AVERAGE p = " << pSum / s << "\r\n" ;
out << "##### MEDIAN p = " << median << "\r\n\r\n" ;
int i = 0 ;
while( i < s )
{

out << samp[i] << "\r\n" ;
i++ ;

}
out.close() ;

}else{
out.close() ;
cout << "*" << endl ;

}

system("PAUSE");
return EXIT_SUCCESS;

}

Lattice.h:

#include <iostream> using namespace ::std; #include <ctime>

#ifndef LATTICE_H #define LATTICE_H

//////////////////////////////////////////////////////////////////////////////
// declarations
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struct Edge ;

struct Vertex
// this structure represents vertex "v"
{

// I/O
//friend istream& operator >>(istream&, Vertex&);
friend ostream& operator <<(ostream&, const Vertex&);

long id ; // unique id number
long numEdges ; // number of adjacent edges
Edge ** adjEdges ; // array of pointers to adjacent edges

} ;

struct Edge
// this structure represents edge "e"
{

// I/O
//friend istream& operator >>(istream&, Edge&);
friend ostream& operator <<(ostream&, const Edge&);

double value ; // "p" value
Vertex * headVertex ; // adjacent vertices
Vertex * tailVertex ;

bool enabled ; // true if edge is "on"
bool searched ; // marker to track pathfinding
bool curPath ; // marker to track current path in pathfinding
bool border ; // true if this edge leads to a new "tile"
int borderDim ; // dimension the border edge occupies
Edge * next ; // linked list for traversal of all edges (destructor)

} ;

class Lattice
// this class represents a lattice of vertices and edges with d dimentions for
// each unique tile
{

// I/O
friend istream& operator >>(istream&, Lattice&);
friend ostream& operator <<(ostream&, const Lattice&);

public:

// constructor - pass in the size of each dimension (array of sizes)
Lattice( int d, int * dArray, int pp ) ;

// destructor - will take care of vertices and edges
~Lattice() ;

// sets the lattice to a certain state for a given p value
void setState( double p ) ;
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// seraches for a valid "infinte path" in the lattice
// uses recursive depth-first search on enabled edges
// lowest valued disabled edge is toggled on bettwen each search
double findPath() ;

// prints picture of a 2d lattice tile
// pre: lattice must be 2-dimensional
void Lattice::print2dPath( ostream & out ) ;

private:

int dimensions ; // number of dimensions
int * dSize ; // array of dimension sizes - used for pretty print (d=2)
int ppSize ; // char size of edges in pretty print
long totalVertices ;
Vertex * v ; // G(V)
Edge * e ; // G(E)
Edge * pEdge ; // enabled edge with highest p-value
bool pathFound ; // enabled if dfs finds path

// depth-first search helper function
bool dfs( Vertex * v, Vertex * dest, long count ) ;
int * tile ; // use in helper function to exclude non-infinite cycles

} ;

//////////////////////////////////////////////////////////////////////////////
// I/O

ostream & operator <<(ostream & out, const Vertex & v ) {
out << " " ;
out << v.id ;
out << " (" ;
// output adjacent edges
int a = 0 ;
while( a < v.numEdges && v.adjEdges[a] != 0 )
{

if ( a != 0 ) out << "," ;
Edge e = *(v.adjEdges[a++]) ;
out << "{" << e.headVertex -> id << "," << e.tailVertex -> id << "}" ;

}
out << ")" ;

return out ;
}

ostream & operator <<(ostream & out, const Edge & e ) {
out.precision( 4 ) ;
if ( e.curPath ) out << "#"; else out << " " ;
if ( e.enabled ) out << "-"; else out << " " ;
if ( e.border ) out << "b" ; else out << " " ;
out << "{" << e.headVertex -> id << "," << e.tailVertex -> id << "} = " ;
out << e.value ;
return out ;
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}

ostream & operator <<(ostream & out, const Lattice & l ) {
out << "d = " << l.dimensions << "\r\n" ;
if ( l.pEdge == 0 )

out << "p = nil" << "\r\n" ;
else

out << "p = " << *(l.pEdge) << "\r\n" ;
out << "\r\n" << "Vertices:" << "\r\n" ;
for(int vert=0;vert<l.totalVertices;vert++)

out << l.v[vert] << "\r\n" ;
out << "\r\n" << "Edges:" << "\r\n" ;
// traverse edges
Edge * ep = l.e ;
while( ep )
{

out << *ep ;
if ( l.pEdge == ep ) out << " p" ;
out << "\r\n" ;
ep = ep -> next ;

}
// out << l.e[edg] << endl ;
return out ;

}

// prints picture of a 2d lattice
// pre: lattice must be 2-dimensional
void Lattice::print2dPath( ostream & out ) {

if( dimensions != 2 )
{

out << "*** Picture only displays for d = 2 ***\r\n" ;
return ;

}
Edge * ex = e ;
Edge * ey = e ;
for(int ei=0;ei<totalVertices;ei++)

ey = ey -> next ;
out << "p = " << *pEdge << "\r\n\r\n" ;
for(int y=0;y<dSize[1];y++)
{

for(int t=0;t<ppSize+1;t++)
{

Edge * ex2 = ex ;
Edge * ey2 = ey ;
for(int x=0;x<dSize[0];x++)
{

int i = y * dSize[0] + x ;
if ( t == 0 )
{

out << "O" ;
char cEdge = ’ ’ ;
if ( ex2 == pEdge ) cEdge = ’p’ ;
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else if ( ex2 -> curPath ) cEdge = ’#’ ;
else if ( ex2 -> enabled ) cEdge = ’-’ ;
else cEdge = ’ ’ ;
for(int ct=0;ct<ppSize;ct++) out << cEdge ;

}
else if ( t == 1 )
{

if ( ey2 == pEdge ) out << ’p’ ;
else if ( ey2 -> curPath ) out << ’#’ ;
else if ( ey2 -> enabled ) out << ’|’ ;
else out << ’ ’ ;
out.setf( ios_base::left,ios_base::adjustfield ) ;
out.width( ppSize );
if (ppSize >= int( log( totalVertices - 1 )/log( 10 ) + 1 ))
out << v[i].id ;

else out << " " ;
}
else
{

if ( ey2 == pEdge ) out << ’p’ ;
else if ( ey2 -> curPath ) out << ’#’ ;
else if ( ey2 -> enabled ) out << ’|’ ;
else out << ’ ’ ;
out.width( ppSize ) ;
out << " " ;

}
ex2 = ex2 -> next ;
ey2 = ey2 -> next ;

}
out << "\r\n" ;

}
for(int ct=0;ct<dSize[0];ct++)
{

ex = ex -> next ;
ey = ey -> next ;

}
}
return ;

}

//////////////////////////////////////////////////////////////////////////////
// Lattice methods

// constructor - pass in the size of each dimension (array of sizes)
Lattice::Lattice( int d, int * dArray, int pp ) {

ppSize = pp ;
dSize = new int[d] ;
pathFound = false ;
totalVertices = 1 ;
for(int dim=0;dim<d;dim++)
{

totalVertices *= dArray[ dim ] ;
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dSize[dim] = dArray[dim] ; // used for pretty print only
}
dimensions = d ;

// create array of vertices
v = new Vertex[ totalVertices ] ;
for(long vert=0;vert<totalVertices;vert++)
{

v[vert].id = vert ;
v[vert].numEdges = 2 * d ;
v[vert].adjEdges = new Edge *[ 2 * d ] ;
for(int a=0;a<2*d;a++)

v[vert].adjEdges[a] = 0 ;
//v[vert].curPath = false ;

}

// create edges
Edge * ep, * eq ;
long m = 1 ; // used for assigning vertices
long m2 = 1 ; // used for assigning border edges
long dLast = 1 ; // used for assigning border edges
for(int dim=0;dim<d;dim++)
{

m2 *= dArray[ dim ] ;
for(long x=0;x<totalVertices;x++)
{

ep = new Edge() ;

// assign random p-trigger value
ep -> value = ((double)rand() / ((double)(RAND_MAX)+(double)(1))) ;

// assign head vertex
ep -> headVertex = &v[x] ;
// add edge to head vertex
int xv = 0 ;
while( v[x].adjEdges[xv] != 0 ) xv++ ;
v[x].adjEdges[xv] = ep ;
// assign tail vertex
long y ;
if ( x % m2 >= m2 - m ) y = x-m2+m ;
else y = x+m ;
ep -> tailVertex = &v[y] ;
// add edge to tail vertex
int yv = 0 ;
while( v[y].adjEdges[yv] != 0 ) yv++ ;
v[y].adjEdges[yv] = ep ;
// set flags
ep -> enabled = false ;
ep -> curPath = false ;
if ( x % m2 >= m2 - m )
{

ep -> border = true ;
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ep -> borderDim = dim ;
}
else ep -> border = false ;

if ( dim == 0 && x == 0 )
e = ep ;

else eq -> next = ep ;
eq = ep ;

}
m *= dArray[ dim ] ;
dLast = dArray[ dim ] ;

}
ep -> next = 0 ;

// set pEdge pointer
pEdge = 0 ;

}

// destructor - will take care of vertices and edges
Lattice::~Lattice() {

// destroy vertices
for(long vert=0;vert<totalVertices;vert++)

delete[] v[vert].adjEdges ;
delete[] v ;
// destroy edges
// traverse linked list
Edge * ep = e ;
while( ep )
{

ep = ep -> next ;
delete e ;
e = ep ;

}
// destroy dSize
delete[] dSize ;

}

// sets the lattice to a certain state for a given p value
// was not used much in searching algorithm, mostly for debugging
void Lattice::setState( double p ) {

Edge * ep = e ;
pEdge = 0 ;
while( ep )
{

if ( p >= ( ep -> value ))
{

ep -> enabled = true ;
if ( !pEdge || (( pEdge -> value ) < ( ep -> value )))
pEdge = ep ;

} else
ep -> enabled = false ;
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ep = ep -> next ;
}

}

// seraches for a valid "infinte path" in the lattice
// uses recursive depth-first search on enabled edges
// greedy algorithm accepts first path found, which is acceptable for this
// problem...path may not be "optimal", and may contain loops (user can see
// this if picture is in output)
// lowest valued disabled edge is toggled on bettwen each search
// some heuristics used to attempt reduce number of searches
double Lattice::findPath() {

//int nextTile[ dimensions ] ;
pathFound = false ;
double pathFoundP = -1.0 ;
setState( 0.0 ) ;

// this loop doesn’t need an escape clause because eventually a path
// should be found

// while we haven’t found the path
long count = 0 ;
while( pathFoundP < 0.0 && count < totalVertices * dimensions )
{

// enable lowest value edge that is off
Edge * ep = e ;
Edge * elow = e ;
while( ep )
{

if (( ep -> enabled == false ) &&
(( elow -> value ) > ( ep -> value )) ||
(( elow -> enabled ) == true ))
elow = ep ;

ep = ep -> next ;
}
pEdge = elow ;
pEdge -> enabled = true ;

// clear paths traversed
ep = e ;
while( ep )
{

ep -> curPath = false ;
ep -> searched = false ;
ep = ep -> next ;

}

bool headE = false ;
bool tailE = false ;
// head vertex connected to another enabled edge?
Vertex * vp = pEdge -> headVertex ;
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int veindex = 0 ;

while((veindex < vp -> numEdges)&&((vp -> adjEdges[veindex] == pEdge) ||
( vp -> adjEdges[veindex] -> enabled == false )))

veindex++ ;
if ((veindex < vp -> numEdges)&&(vp -> adjEdges[veindex] != pEdge) &&

( vp -> adjEdges[veindex] -> enabled == true ))
headE = true ;

// tail vertex connected to another enabled edge?
vp = pEdge -> tailVertex ;
veindex = 0 ;

while((veindex < vp -> numEdges)&&((vp -> adjEdges[veindex] == pEdge) ||
( vp -> adjEdges[veindex] -> enabled == false )))

veindex++ ;
if ((veindex < vp -> numEdges)&&( vp -> adjEdges[veindex] != pEdge ) &&

( vp -> adjEdges[veindex] -> enabled == true ))
tailE = true ;

// if both vertices of enabled edge connect to another enabled edge...
if ( headE && tailE )

// ...then perform depth-first search on head vertex
{

tile = new int[dimensions] ;
for( int t=0; t<dimensions; t++)

tile[t] = 0 ;
if ( dfs( pEdge -> headVertex, pEdge -> headVertex, count ))

pathFoundP = pEdge -> value ;
delete[] tile ;

}
count++ ;

}

return pathFoundP ;
}

// search helper function
bool Lattice::dfs( Vertex * v, Vertex * dest, long count ) {

// starting from this vertex...
// for each adjacent edge that is enabled and not searched
// and while pathFound is false
int ae = 0 ;
bool found = false ;
while( !found && ae < dimensions * 2 )
{

if ( v -> adjEdges[ae] -> enabled == true &&
v -> adjEdges[ae] -> curPath == false &&
v -> adjEdges[ae] -> searched == false )

{
Vertex * vh = v -> adjEdges[ae] -> headVertex ;
Vertex * vt = v -> adjEdges[ae] -> tailVertex ;
// follow that edge
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Vertex * ve = vh ;
if ( v == vh )

ve = vt ;
// flag that edge
int t = 0 ;
v -> adjEdges[ae] -> curPath = true ;
v -> adjEdges[ae] -> searched = true ;
if( v -> adjEdges[ae] -> border == true )
{

t = v -> adjEdges[ae] -> borderDim ;
if (( v -> id ) > ( ve -> id ))

tile[t] += 1 ;
else

tile[t] += -1 ;
}
// check for tiling
// cycle that is not infinite doesn’t count
// must cross borders a certain way
bool tiling = false ;
for(t=0; t<dimensions; t++)

if ( tile[t] != 0 ) tiling = true ;
// if the next vertex is the destination
if ( ve == dest && tiling )
{

// flag path found
return true ; }

// else
else
{

// search from next vertex
found = dfs( ve, dest, count ) ;
if ( !found )
{

v -> adjEdges[ae] -> curPath = false ;
if( v -> adjEdges[ae] -> border == true )
{

t = v -> adjEdges[ae] -> borderDim ;
if (( v -> id ) > ( ve -> id ))

tile[t] -= 1 ;
else

tile[t] -= -1 ;
}

}
}

}
ae++ ;

}
return found ;

}
#endif
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